Supporting information

Assembled cobalt phosphide nanoparticles on carbon nanofibers

as a bifunctional catalyst for hydrogen evolution reaction and

oxygen evolution reaction

Meixin Yu, Xu Guo, Xin Chang, Xinzhi Ma* and Mingyi Zhang*

1. Supplementary Tables

Table S1. The activity comparison of CNF@CoP-CNTs with recently reported OER electrocatalysts in alkaline solution.

Catalyst	Electrolyte	E _{j10} (mV)	Ref.
CNF@CoP-CNTs	1 M KOH	367(E _{j50})	This work
Co ₂ P/Co ₂ N@CNF-DNA(C)	1 M KOH	360	[1]
NiCoP/CNF	1 M KOH	268	[2]
CoP/NC	1 M KOH	290	[3]
Fe-CoP NSs	1 M KOH	312	[4]
CoP-TiO _x	1 M KOH	337	[5]
CoP NFs	1 M KOH	323	[6]
CoP / NCS-400	1 M KOH	313	[7]
CoP / VGNHs	1 M KOH	300	[8]
O-CoP	1 M KOH	310	[9]
CoP@NPC	1 M KOH	300	[10]
N/MoeCoP@NPG	1 M KOH	201	[11]
CoP/CC	1 M KOH	176	[12]
Co3O4 CoP	1 M NaOH	320	[13]

Catalyst	Electrolyte	E _{j10} (mV)	Ref.
CNF@CoP-CNTs	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	65	This work
CoP-CNTs hybrids	$0.5 \text{ M H}_2\text{SO}_4$	139	[14]
CoP nanosheets/MXene	$0.5 \text{ M H}_2 \text{SO}_4$	97	[15]
Nanoporous CoPS	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	107	[16]
CoP@P, N-C matrices	$0.5 \text{ M H}_2 \text{SO}_4$	87	[17]
Al, Fe-CoP/rGO	0.5 M H ₂ SO ₄	138	[18]
Ni-CoP hollow polyhedrons	0.5 M H ₂ SO ₄	144	[19]
CoP hollow Polyhedrons	0.5 M H ₂ SO ₄	159	[20]
CoP NWs	0.5 M H ₂ SO ₄	110	[21]
CoP NPs combined with WSe ₂ nanosheets	0.5 M H ₂ SO ₄	163	[22]
CoP/RGO	0.5 M H ₂ SO ₄	105	[23]
Fe-CoP@CC	$0.5 \text{ M H}_2 \text{SO}_4$	80	[24]
Ni-CoP	1 M KOH	88	[25]

Table S2. The activity comparison of CNF@CoP-CNTs with recently reported HER electrocatalysts in acid solution.

2. Supplementary Figures 1 to S6

Figure S1. SAED patterns of (a) CNF

@CoP-5-CNTs , (b) CNF@CoP-10-CNTs , (c) CNF@CoP-12-CNTs , (d) CNF@CoP-15-CNTs , (e) CNF@CoP-18-CNTs , and (f) CNF@CoP-20-CNTs , respectively.

Figure S2. Energy dispersive X-ray spectroscopy (EDS) of CNF@CoP-15-CNTs.

Figure S3. XPS survey spectra of CNF@Co-CNTs.

Figure S4. XPS survey spectra of CNF@CoP-15-CNTs.

The existence of Co and P elements was proved by the XPS survey spectrum of CNF@CoP-15-CNTs.

Figure S5. CV curves of (a) CNF@CoP-5-CNTs, (b) CNF@CoP-10-CNTs, (c) CNF@CoP-12-CNTs, (d) CNF@CoP-15-CNTs, (e) CNF@CoP-18-CNTs, and (f) CNF@CoP-20-CNTs measured in 1.0 M KOH solution at scan rates from 10 to 50 mV s⁻¹.

Figure S6. CV curves of (a) CNF@CoP-5-CNTs, (b) CNF@CoP-10-CNTs, (c) CNF@CoP-12-CNTs, (d) CNF@CoP-15-CNTs, (e) CNF@CoP-18-CNTs, and (f) CNF@CoP-20-CNTs measured in 0.5 M H_2SO_4 solution at scan rates from 10 to 50 mV s⁻¹.

Figure S7. SEM images of CNF@CoP-15-CNTs post electrochemical catalysis. (a) OER. (b) HER.

4. References

- H. Li, X. Kong, X. Geng, C. Gu, Z. Liu, J. Wang, *Electrochimica. Acta.*, 2021, 367, 137562.
- 2 S. Surendran, S. Shanmugapriya, A. Sivanantham, S. Shanmugam, R. K. Selvan, *Adv. Energy Mater.*, 2018, 8, 1800555.
- 3 L. Feng, R. Ding, Y. Chen, J. Wang, L. Xu, J. Power Sources, 2020, 452, 227837.
- 4 T. Chen, S. Qin, M. Qian, H. Dai, Y. Fu, Y. Zhang, B. Ye, Q. Lin, Q. Yang, *Energy Fuels*, 2021, **35**, 10890–10897.
- 5 Z. Liang, W. Zhou, S. Gao, R. Zhao, H. Zhang, Y. Tang, J. Chen, T. Qiu, B. Zhu, C. Qu, W. Gao, Q. Wang, R. Zou, *Small*, 2020, 16, 1905075.
- 6 L. Ji, J. Wang, X. Teng, T. J. Meyer, Z. Chen, ACS Catal., 2020, 10, 412-419.
- 7 T. Yin, X. Zhou, A. Wu, H. Yan, Q. Feng, C. Tian, *Electrochim. Acta*, 2018, 276, 362-369.
- 8 L. Truong, S. K. Jerng, S. B. Roy, J. H. Jeon, K. Kim, K. Akbar, Y. Yi, S. H. Chun, ACS Sustainable Chem. Eng., 2019, 7, 4625-4630.
- 9 G. Zhou, M. Li, Y. Li, H. Dong, D. Sun, X. Liu, L. Xu, Z. Tian, Y. Tang, Adv. Funct. Mater., 2020, 30, 1905252.
- 10 Z. Chen, H. Jia, J. Yuan, X. Liu, C. Fang, Y. Fan, C. Cao, Z. Chen, Int. J. Hydrogen Energy, 2019, 44, 24342-24352.
- 11 K. Li, H. Ding, J. J. Zhou, W. Wang, P. Zhang, L. Wang, J. Wu, Y. Lei, C. Zhou, J. Liu, L. Chen, *ScienceDirect*, 2021, 8, 0360-3199.
- 12 P. Ji, X. Luo, D. Chen, H. Jin, Z. Pu, W. Zeng, J. He, H. Bai, Y.Liao, S. Mu, ACS Sustainable Chem. Eng., 2020, 8, 17851–17859.
- 13 B. Malik, H. K. Sadhanala, R. Sun, F. L. Deepak, A. Gedanken, G. D. Nessim, ACS Appl. Nano Mater., 2022, 5, 9150–9158.
- 14 C. Wu, Y. Yang, D. Dong, Y. Zhang, J. Li, Small, 2017, 13, 1602873.
- 15 L. Yan, B. Zhang, S. Wu, J. Yu, J. Mater. Chem., A, 2020, 8, 14234–14242.
- 16 W. Hong, C. Jian, G. Wang, X. He, J. Li, Q. Cai, Z. Wen, W. Liu, *Appl. Catal. B-Environ.*, 2019, **251**, 213–219.
- 17 R. Boppella, J. Park, W. Yang, J. Tan, J. Moon, Carbon, 2020, 156, 529–537.
- 18 S. F. Zai, Y. T. Zhou, C. C. Yang, Q. Jiang, Chem. Eng. J., 2021, 421, 127856.
- 19 Y. Pan, K. Sun, Y. Lin, X. Cao, Y. Cheng, S. Liu, L. Zeng, W. C. Cheong, D. Zhao, K. Wu, Z. Liu, Y. Liu, D. Wang, Q. Peng, C. Chen, Y. Li, *Nano Energy*, 2019, 56, 411–419.
- 20 M. Liu, J. Li, ACS Appl. Mater. Interfaces, 2016, 8, 2158-2165.
- 21 P. Jiang, Q. Liu, C. Ge, W. Cui, Z. Pu, A. M. Asiri, X. Sun, *J. Mater. Chem.*, *A*, 2014, **2**, 14634–14640.
- 22 J. Qian, Z. Li, X. Guo, Y. Li, W. Peng, G. Zhang, F. Zhang, X. Fan, *Ind. Eng. Chem. Res.*, 2018, 57, 483–489.
- 23 L. Jiao, Y. X. Zhou, H. L. Jiang, Chem. Sci., 2016, 7, 1690-1695.
- 24 Y. Yang, H. Meng, C. Kong, W. Ma, H. Zhu, F. Ma, C. Wang, Z. Hu,

ScienceDirect, 2021, **6**, 0360-3199.

25 Y. Zhao, J. Zhang, Y. Xie, B. Sun, J. Jiang, W. J. Jiang, S. Xi, H. Y. Yang, K. Yan, S. Wang, X. Guo, P. Li, Z. Han, X. Lu, H. Liu, G. Wang, *Nano Lett.*, 2021, 21, 823– 832.