## **Supporting information**

## **Carbon Fiber Reinforced Structural Zn-ion Battery Composite with Enhanced Mechanical Properties and Energy Storage Performance**

Xu Liu<sup>a</sup>, Qigang Han<sup>a,b</sup>\*, Jincheng Han<sup>a</sup>, Qingxin Ma<sup>a</sup>, Chunguo Liu<sup>a</sup>\* <sup>a</sup> Roll Forging Research Institute, School of Materials Science and Engineering (Key Laboratory of Automobile Materials, Ministry of Education), Jilin University, Changchun 130022, P.R. China <sup>b</sup> State Key Laboratory of Automotive Simulation and Control, Jilin University,

Changchun 130022, P.R. China

E-mail: hanqg@jlu.edu.cn; liucg@jlu.edu.cn



Fig. S1. (a) Schematic illustration of the synthesis of the  $Ti_3C_2M_x$ -MXene nanosheet. (b) Schematic illustration of the fabrication of the CF@PANI/Mxene structural electrode.



Fig. S2. (a) SEM image of the  $Ti_3AlC_2$ . (b) SEM image of  $Ti_3C_2$  MXene. (c) Tyndall effect produced by a few-layer/single-layer MXene solution.



Fig. S3. (a) SEM image of carbon fiber.



Fig. S4. (a) SEM image of CF@PANI.



Fig. S5. (a) the XPS spectrums of CF@PANI/MXene.



**Fig. S6.** (a) The SEM image of Zn deposited on carbon fiber. (b) and (c) Corresponding element mapping of Zn and C.



Fig. S7. (a) The Young's modulus of CF@Zn and Zn foil, respectively.



Fig. S8. (a) and (b) The SEM image of MMT and Zn-MMT, respectively.



Fig. S9. (a) XRD patterns of MMT and Zn-MMT, respectively.



Fig. S10. The rate performance of regular structural Zn-ion battery.



Fig. S11. Galvanostatic charge-discharge test at different current densities.

| Materials                   | Electrochemical performance |                | Mechanical properties      |                        | Reference                |
|-----------------------------|-----------------------------|----------------|----------------------------|------------------------|--------------------------|
|                             | Energy storage              | Cycling        | Tensile strength and       | Bending strength and   |                          |
|                             | (Wh kg <sup>-1</sup> )      | performance    | Young's modulus            | modulus                |                          |
| C1-100/0 (Li <sup>+</sup> ) | 0.320±0.08                  | /              | 71.7±2.87 MPa and 14.7 GPa | /                      | Mater. Res. Express 5    |
|                             |                             |                |                            |                        | (2018) 055701[1]         |
| Zn/PZB-931/y-MnO2           | $123.4 \text{ mAhg}^{-1}$   | 90% after 100  | /                          | /                      | ACS Nano 2019, 13,       |
|                             |                             | cycles         |                            |                        | 1107-1115[2]             |
| PANI/BANF/CNT               | $128\pm5\ mAhg^{-1}$        | 90% after 1000 | $40 \pm 4$ MPa and         | /                      | Nanoscale, 2020, 12,     |
|                             |                             | cycles         | $4\pm0.5~\mathrm{GPa}$     |                        | 16840–16850[3]           |
| CF GR LiTFSI in             | ~30 mAh g <sup>-1</sup> (36 | /              | 213 MPa and ~1.8 MPa       | /                      | Energy Storage Materials |
| EMIMBF4 CF LFP              | Wh kg <sup>-1</sup> )       |                |                            |                        | 24 (2020) 676–681[4]     |
| PAN GR LFP                  | 52 W h kg <sup>-1</sup>     | 68% after 1000 | /                          | /                      | DOI:                     |
|                             |                             | cycles         |                            |                        | 10.1039/d0se00263a[5]    |
| LSB                         | 16 mAh g <sup>-1</sup>      | 8% after 100   | 270.13 MPa and 28.54 GPa   | 55.18 MPa and 9.19 GPa | Polymer Composites.      |
|                             |                             | cycles         |                            |                        | 2020;1–11.[6]            |

 Table S1. The comparison of electrochemical performance between PC@Cu electrode and previously reported electrodes

| Li/0.4 M LiBoB/0.6 M         | 23.6 W h kg <sup>-1</sup>     | 35 cycles       | 163 MPa               | /                         | Adv. Energy Sustainability |
|------------------------------|-------------------------------|-----------------|-----------------------|---------------------------|----------------------------|
| LiTf/LiFePO4                 |                               |                 |                       |                           | Res.2021,2, 2000093[7]     |
| graphite/LiNi0.5Mn0.3Co0.2O2 | 148.6 mAh g <sup>-1</sup>     | 95.5% after 500 | /                     | Bending modulus is 3.1 GP | Adv. Energy Mater. 2021,   |
|                              |                               | cycles          |                       |                           | 2100997[8]                 |
| Zn-MnO2                      | 145.9                         | 88.3% after 500 | 293 MPa               | 180.8 MPa and 4.4 GPa     | Composites Science and     |
|                              | $mAh g^{-1}$                  | cycles          | and 12.8 GPa          |                           | Technology 209 (2021)      |
|                              |                               |                 |                       |                           | 108787[9]                  |
| LiFePO4/Graphene oxide       | 93.3 mAh.g <sup>-1</sup>      | 88.1% after 500 | /                     | /                         | Composites Science and     |
|                              | (222.14 Wh·kg <sup>-1</sup> ) | cycles          |                       |                           | Technology 208 (2021)      |
|                              |                               |                 |                       |                           | 108768[10]                 |
| ACF LATP-GF/PEO-LiTFSI Li    | $1.45 \text{ mAh cm}^{-2}$    | 68% after 500   | 124.2 MPa             | 110 MPa                   | ACS Appl. Energy Mater.    |
|                              |                               | cycles          |                       |                           | 2021, 4, 4038–4049[11]     |
| LFP/WCF                      | $114 \text{ mAhg}^{-1}$       | 82% after 500   | /                     | /                         | Composite Structures 256   |
|                              |                               | cycles          |                       |                           | (2021) 112999              |
| LFP/Carbon Fiber             | 1.05 Wh L <sup>-1</sup>       | 10 cycles       | 145 MPa and 0.289 GPa | /                         | Manufacturing Letters 24   |
|                              |                               |                 |                       |                           | (2020) 1–5 [12]            |
| Ni Hydroxide / Iron          | 1.4 Wh kg <sup>-1</sup>       | /               | 270 MPa and 7 GPa     | /                         | Nano Lett. 18, 7761–7768   |

| Hydroxide           |                              |                 |                                   |                       | 267 (2018)[13] |
|---------------------|------------------------------|-----------------|-----------------------------------|-----------------------|----------------|
| RS Zn-ion batteries | 336.1 mAh g <sup>-1</sup>    | 95.5% after 500 | $194.6\pm8.0$ MPa and $9.6\pm0.4$ | 268.0 MPa and 8.6 GPa | This work      |
|                     | (235.6 Wh kg <sup>-1</sup> ) | cycles          | GPa                               |                       |                |



Fig. S12 (a) The compression curve of in-situ electrochemical-mechanical performance of OS ZIB.(b) The voltage profiles at 0 MPa. (c)The voltage profiles at 100 MPa. (d)The voltage profiles at 201 MPa.

## Reference

[1] A. Javaid, M.Z. Ali, Multifunctional structural lithium ion batteries for electrical energy storage applications, Mater. Res. Express 5(5) (2018) 055701.

[2] M. Wang, A. Emre, S. Tung, A. Gerber, D. Wang, Y. Huang, V. Cecen, N.A. Kotov, Biomimetic Solid-State Zn(2+) Electrolyte for Corrugated Structural Batteries, ACS Nano 13(2) (2019) 1107-1115.

[3] P. Flouda, A.H. Quinn, A.G. Patel, D. Loufakis, D.C. Lagoudas, J.L. Lutkenhaus, Branched aramid nanofiber-polyaniline electrodes for structural energy storage, Nanoscale 12(32) (2020) 16840-16850.

[4] K. Moyer, C. Meng, B. Marshall, O. Assal, J. Eaves, D. Perez, R. Karkkainen, L. Roberson, C.L. Pint, Carbon fiber reinforced structural lithium-ion battery composite: Multifunctional power integration for CubeSats, Energy Storage Mater. 24 (2020) 676-681.

[5] K. Moyer, N.A. Boucherbil, M. Zohair, J. Eaves-Rathert, C.L. Pint, Polymer

reinforced carbon fiber interfaces for high energy density structural lithium-ion batteries, Sustainable Energy Fuels 4(6) (2020) 2661-2668.

[6] Y. Zhao, D. Zhao, T. Zhang, H. Li, B. Zhang, Z. Zhenchong, Preparation and multifunctional performance of carbon fiber-reinforced plastic composites for laminated structural batteries, Polym. Compos. 41(8) (2020) 3023-3033.

[7] L.E. Asp, K. Bouton, D. Carlstedt, S. Duan, R. Harnden, W. Johannisson, M. Johansen, M.K.G. Johansson, G. Lindbergh, F. Liu, K. Peuvot, L.M. Schneider, J. Xu, D. Zenkert, A Structural Battery and its Multifunctional Performance, Adv. Energy Sustainability Res. 2(3) (2021) 2000093.

[8] T. Jin, Y. Ma, Z. Xiong, X. Fan, Y. Luo, Z. Hui, X. Chen, Y. Yang, Bioinspired, Tree-Root-Like Interfacial Designs for Structural Batteries with Enhanced Mechanical Properties, Adv. Energy Mater. n/a(n/a) (2021) 2100997.

[9] J. Chen, Y. Zhou, M.S. Islam, X. Cheng, S.A. Brown, Z. Han, A.N. Rider, C.H. Wang, Carbon fiber reinforced Zn–MnO2 structural composite batteries, Compos. Sci. Technol. 209 (2021) 108787.

[10] J.S. Sanchez, J. Xu, Z. Xia, J. Sun, L.E. Asp, V. Palermo, Electrophoretic coating of LiFePO4/Graphene oxide on carbon fibers as cathode electrodes for structural lithium ion batteries, Compos. Sci. Technol. 208 (2021) 108768.

[11] G.-H. Dong, Y.-Q. Mao, G.-M. Yang, Y.-Q. Li, S.-F. Song, C.-H. Xu, P. Huang, N. Hu, S.-Y. Fu, High-Strength Poly(ethylene oxide) Composite Electrolyte Reinforced with Glass Fiber and Ceramic Electrolyte Simultaneously for Structural Energy Storage, ACS Appl. Energy Mater. 4(4) (2021) 4038-4049.

[12] A. Thakur, X. Dong, Printing with 3D continuous carbon fiber multifunctional composites via UV-assisted coextrusion deposition, Manuf. Lett. 24 (2020) 1-5.

[13] C. Meng, N. Muralidharan, E. Teblum, K.E. Moyer, G.D. Nessim, C.L. Pint, Multifunctional Structural Ultrabattery Composite, Nano Lett. 18(12) (2018) 7761-7768.