## Suppression of Photocatalytic Activity of ZnO Fabricated by Sol-Gel Method under Gentle

## Vacuum Condition for Highly Durable Organic Solar Cells

Masahiro Nakano<sup>a</sup>\*, Tomoki Kobayashi<sup>a</sup>, Masaki Kaneda<sup>a</sup>, Sae Nakagawa<sup>a</sup>, Md. Shahiduzzaman<sup>b</sup>, Makoto Karakawa<sup>a,b,c</sup>, Tetsuya Taima<sup>a,b,c</sup>

<sup>a</sup>Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
<sup>b</sup>Nanomaterial Research Institute (NanoMaRI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
<sup>c</sup>Institute for Frontier Science Initiative (InFiniti), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan

#### Contents

- 1. Electrical resistance measurement of ZnO films
- 2. Water-contact angle measurement of ZnO films
- 3. Summarized photovoltaic properties
- 4. Changes of Photovoltaic properties with photo-irradiation time
- 5. Changes of  $R_{ZnO}$  with photo-irradiation time
- 6. Thermal stability testing of ZnO<sup>air</sup>-based OSCs

#### 1. Electrical resistance measurement of ZnO films



Figure S1. J-V characteristics of ZnO films sandwiched by ITO and Ag electrodes (ITO/ZnO/Ag).

### 2. Water-contact angle measurement of ZnO films



**Figure S2.** Water-contact angle measurement of ZnO<sup>vac</sup> (a) and ZnO<sup>air</sup> (b) prepared by 60 minutes of thermal annealing (100°C), ZnO<sup>vac</sup> prepared by 5 minutes of thermal annealing (c).

#### 3. Summarized photovoltaic properties

| Table S1. Summa | ary of photovo | ltaic properties | of OSCs based | on ZnO <sup>air</sup> and ZnO <sup>vac</sup> . |
|-----------------|----------------|------------------|---------------|------------------------------------------------|
|-----------------|----------------|------------------|---------------|------------------------------------------------|

| ZnO Preparation | J <sub>SC</sub><br>∕ mAcm <sup>-2</sup> | V <sub>oc</sub><br>/V | FF          | PCE / %    |
|-----------------|-----------------------------------------|-----------------------|-------------|------------|
| in air          | 9.1 (±0.2)                              | 0.57 (±0.0)           | 0.61 (±0.0) | 3.1 (±0.1) |
| under vacuum    | 9.0 (±0.3)                              | 0.57 (±0.1)           | 0.61 (±0.1) | 3.1 (±0.2) |

#### 4. Changes of Photovoltaic properties with photo-irradiation time



**Figure S3.** Changes in typical *J-V* characteristics of OSCs based on  $ZnO^{vac}$  (a) and  $ZnO^{air}$  (b) with photoirradiation time (0–100 h).



**Figure S4.** Changes in  $J_{SC}$  (a),  $V_{OC}$  (b), and FF (c) values with continuous photoirradiation of OSCs based on ZnO<sup>air</sup>.



**Figure S5.** Changes in  $J_{SC}$  (a),  $V_{OC}$  (b), and FF (c) values with continuous photoirradiation of OSCs based on ZnO<sup>vac</sup>.

# 5. Changes of $R_{ZnO}$ with photo-irradiation time



Figure S6. Changes in  $R_{ZnO}$  of OSCs based on  $ZnO^{vac}$  (blue trace) and  $ZnO^{air}$  (red trace) with photoirradiation time (0–100 h).

#### 6. Thermal stability testing of ZnOair-based OSCs

The thermal stability of ZnO<sup>air</sup>-based OSCs was investigated under dark conditions at 65°C which is similar temperature during continuous photoirradiation. The ZnO<sup>air</sup>-based device showed good thermal stability; the PCE value of the ZnO<sup>air</sup>-based OSC was kept 97% of the initial value after 50 h of thermal stability testing (Figure S7). Moreover, AC-impedance measurement of the ZnO<sup>air</sup>-based device indicates that the active layer does not decompose by thermal heating without photo-irradiation (Figure S8). Considering the poor stability of ZnO<sup>air</sup>-based devices under continuous photo-irradiation, the photo-degradation of active layer materials on ZnO<sup>air</sup> should be caused by photo-catalytic reaction.



Figure S7. Changes of PCE of ZnOair-based OSC under dark conditions at 65°C.



**Figure S8.** Nyquist plots of the  $ZnO^{air}$ -based OSC (a) and changes in resistance values of the active layer of the  $ZnO^{air}$ -based OSC with continuous thermal annealing (65°C) without photo-irradiation.