Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

High performance FeOx@CoOx/NC electrocatalyst for oxygen reduction reaction in alkaline media

Fatima Nasim,¹ Hassan Ali¹ Muhammad Amtiaz Nadeem² and Muhammad Arif Nadeem^{1,2}*

¹Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University,

Islamabad 45320, Pakistan

²Pakistan Academy of Sciences, 3-Constitution Avenue Sector G-5/2, Islamabad, Pakistan.

*Contact details:

M.A.N; manadeem@qau.edu.pk

Determination of electron number

For the determination of electron number, Koutechy-Levich plots were drawn at different potentials from which electron number was calculated according to the formula given below.¹

$$\frac{1}{j} = \frac{1}{jd} + \frac{1}{jk}$$

$$\frac{1}{j} = \frac{1}{B\sqrt{W}} + \frac{1}{jk}$$

$$jd = 0.62nFC_0 (D_0)^{2/3} (V)^{-1/6}$$



Figure 1. PXRD pattern of MWCNTs and FeOx@MWCNTs

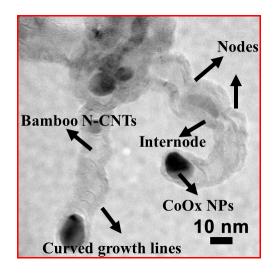


Figure S2. HRTEM image of CoOx/NC at 10nm

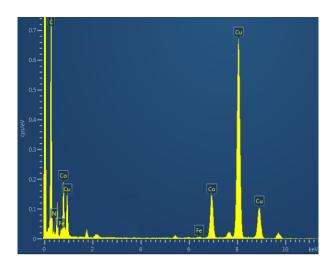


Figure S3. EDX analysis of FeOx@CoOx/NC2

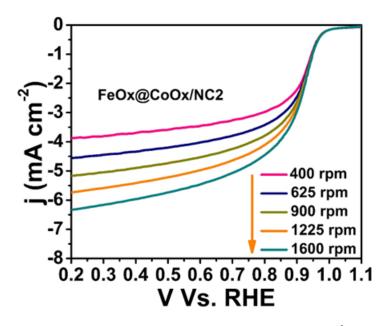
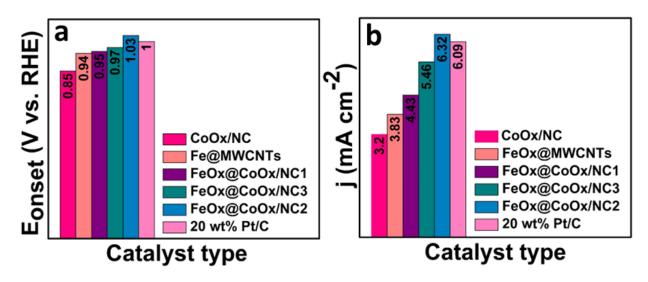



Figure S4. Rotation effect of FeOx@CoOx/NC2 at 10 mV s⁻¹ in 0.1 M KOH

Figure S5. Comparison of ORR evaluating parameters of the synthesized materials with 20 wt% Pt/C (a) onset potential (b) current density

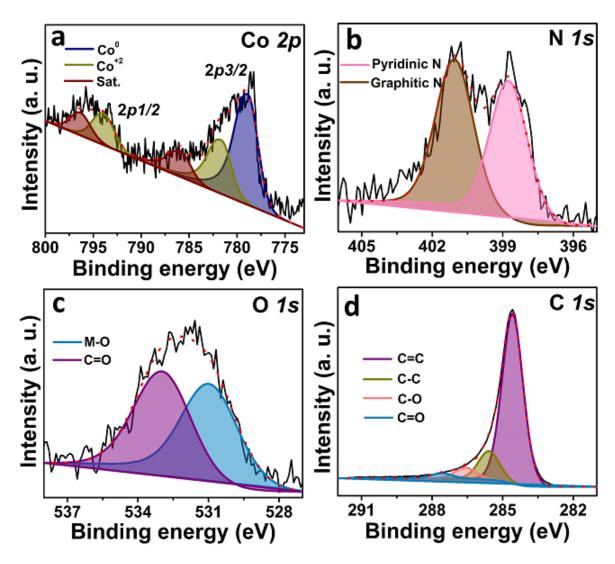
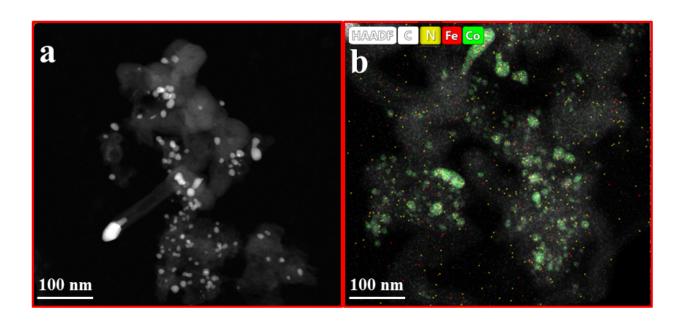
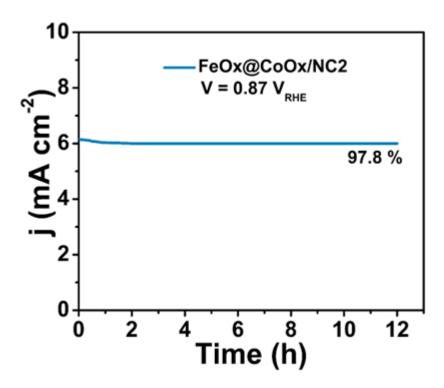
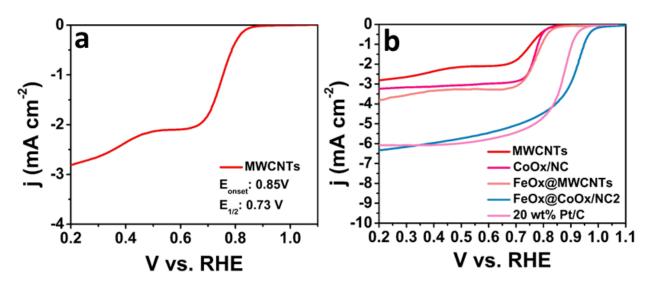


Figure S6. XPS spectrum of CoOx/NC (a) Co 2p (b) N 1s (c) O 1s (d) C 1s²

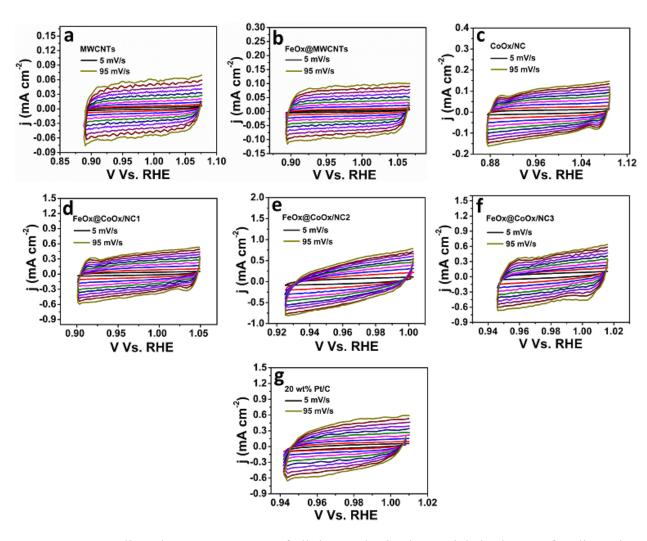

Figure S7. HAADF TEM analysis of FeOx@CoOx/NC2 at 100 nm

Figure S8. Chronoamperometric response of FeOx@CoOx/NC2 over 12 h in O₂ saturated environment at 1600 rpm

Figure S9. (a) LSV polarization curve of MWCNTs in O₂ saturated environment 0.1M KOH at 1600 rpm (b) comparison of ORR performance of MWCNTs and synthesized catalysts with 20 wt% Pt/C

Figure S10. Cyclic voltammetry curves of all the synthesized materials in the non-faradic region at different scan rates in Ar saturated environment

Table S1. Comparison of ECSA of all the synthesized materials

S.No.	Catalysts	Cdl (mF cm ⁻²)	ECSA (cm ²)
1	MWCNTs	0.6	15
2	FeOx@MWCNTs	1	25
3	CoOx/NC	1.1	27.5
4	FeOx@CoOx/NC1	4.3	107.5
5	FeOx@CoOx/NC2	5	125
6	FeOx@CoOx/NC3	4.4	110
7	20 wt% Pt/C	4.7	117.5

References

- 1. Khan, I. A.; Qian, Y.; Badshah, A.; Nadeem, M. A.; Zhao, D., Highly porous carbon derived from MOF-5 as a support of ORR electrocatalysts for fuel cells. *ACS Appl. Mater. Interfaces* **2016**, *8* (27), 17268-17275.
- 2. Khan, I.; Nasim, F.; Choucair, M.; Ullah, S.; Badshah, A.; Nadeem, M., Cobalt oxide nanoparticle embedded N-CNTs: lithium ion battery applications. *RSC Adv.* **2016**, *6* (2), 1129-1135.