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Section 1. Experimental Section 

Scheme 1. Route for the synthesis of CP

Preparation of CP: In a round-bottom flask equipped with a condenser for refluxing and a 

magnetic stirring bar, methyl 4-hydroxybenzoate (5.78 g, 37.99 mmol), phosphonitrilic 

chloride trimer (2.00 g, 5.75mmol), potassium carbonate (5.25 g, 37.99 mmol) and dry 

acetone (100 mL) were added. The mixture was stirred under reflux under argon atmosphere 

for 24 h, and then cooled to room temperature. After the solvent was removed by rotation 

evaporation, water (100 mL) and dichloromethane (200 mL) were added. The organic phase 

was separated and the aqueous phase was extracted with dichloromethane. The organic phase 

was combined, washed with brine, dried over anhydrous MgSO4, and filtered. After removal 

of the volatile solvent, the residue was purified by silica gel column chromatography 

(100~200 mesh) using petroleum ether and ethyl acetate (3:1, v/v) as eluents to afford the 

hexamethyl intermediate as a pure white solid in 92% yield 

To the hexamethyl intermediate (5.50 g, 5.28 mmol) in methanol (25 mL) and THF (25 mL) 

was added NaOH aqueous solution (4 M, 25 mL). The mixture was stirred under an argon 

atmosphere at room temperature for 48 h. After the solvent was evaporated, the residue was 

dissolved in water and acidified with concentrated HCl in an ice-water bath (pH=1~2). The 

resulting precipitate was collected by suction, washed with water twice, and dried at 70 oC 

under vacuum, affording the target compound as an off-white solid in 97% yield (4.89 g, 5.11 

mmol).

Preparation of CPP-X: First, the polypyrrole-based hydrogel (PPH) was synthesized using a 

template-free gelation process through thepolymerization of pyrrole monomers in the 

presence of CP and FeCl3. Typically, 400 μL pyrrole monomer was added into 3 mL CP 

solution (0.5 mM in ethanol/water, v/v=1:1). 2.24 g of FeCl3 was dissolved into another 3 mL 



CP solution (0.5 mM in ethanol/water, v/v=1:1). After cooling down to about 4 oC, both 

solutions were mixed together quickly, then aged for 24 h. During polymerization, a 

crosslinked polymer framework was formed through electrostatic interaction and/or hydrogen 

bonding between the positively charged groups containing PPH chains and CP, as well as 

through the chelation effect of iron ions on PPH chains. Thus, a stable black gel was obtained. 

The obtained PPH was purified with deionized (DI) water and freeze-dried, and then 

pyrolyzed in argon atmosphere at a heating rate of 5 oC min-1 at different temperatures (800, 

900, 1000 oC) for 2 hours. The obtained samples were named CPP-800, CPP-900 and CPP-

1000, respectively.

Scheme 2. Route for the synthesis of Ferrocene derived single-atom catalysts.

Preparation of PF-X: PF-800 was prepared according to our previous work. Briefly, 4.2 mL 

pyrrole was initially dissolved in 50 mL isopropanol. Then, 1,1'-Ferrocenedicarboxylic acid 

(1.053 g, 1.1 mmol), NaOH (0.27 g, 6.75 mmol) and ammonium persulfate (13.7 g, 61 mmol) 

that pre-dissolved in 100 mL H2O were quickly mixed with pyrrole at the temperature of 4 oC 

to give the FP hydrogel. The hydrogel was washed by ethanol and water thoroughly, and then 

subjected to freeze-drying to afford the PF-xerogels. PF-X was prepared via direct 

carbonization of PF-xreogel directly under the Ar. After finely grinding, PF-xreogel was 

loaded on a porcelain boat and then transferred into a tube furnace. Then, the pyrolysis was 

conducted under the atmosphere of Ar and heated to the target temperature (X =700, 800 and 



900 oC) for 2 h. The target product, namely PF-X, is obtained after natural cooling to room 

temperature.

Preparation of BSMP-800 
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Scheme 3. Route for the synthesis of bisalphen derived single-atom catalyst.

The bisalphen (N,N’,N’’,N’’’-tetrabis-(salicylidene)-3,30,4,40-biphenylenetetraimino) ligand 

was prepared as previously described in the literature. The bisalphen ligand (1.58 mmol) was 

dissolved in ethanol (50 mL) and slowly added dropwise over a suspension of MoO2(acac)2. 

The mixture was stirred under nitrogen atmosphere at 80 oC for 24 hours. The solution was 

refluxed for 36 hours, and the red precipitate was filtered and recrystallized from methanol. 

The obtained product was stored under vacuum at room temperature. BSMP hydrogel was 

prepared under the same procedure as the FP-gel. And the final catalysts was obtained via 

direct carbonization of BSMP at 800 oC.

Materials Characterization: The morphologies of powder samples were evaluated by the 

scan electron microscopy (SEM, Caisi Sigma 300) and the transmission electron microscopy 

(TEM, JEOL JEM2100PLUS) via dipping the prepared samples on a Cu-net, X-ray 



Photoelectron Spectroscopy (XPS) was conducted on XPSESCALAB 250Xi analyser. X-ray 

diffraction (XRD) parameters were obtained using a Rigaku Ultima IV diffractometer at a rate 

of 5o min-1 from 5o to 80o. The Brunauer-Emmett-Teller (BET) method was utilized to 

calculate the specific surface area. The adsorption and desorption measurements for N2 were 

performed on ASAP2460 (Micromeritics) at low temperature of 77 K. Raman spectra were 

collected on a LabRAM HR Evolution (HORIBA) using a laser with an excitation wavelength 

of 532 nm. Fourier Transform Infrared Spectroscopy (FTIR) was performed on KBr pellets in 

the range from 4000 to 400 cm-1 using Thermo Nicolet iS5. Thermo-gravimetric analysis 

(TGA) were recorded using NETZSCH STA 449C analyzer from 25 to 900 oC at a heating 

rate of 10 oC min-1 under the protection of N2.

Electrochemical Measurements[1-6]: The electrochemical measurements were carried out 

using RRDE-3A electrochemical workstation in a general three-electrode system, in which 

Ag/AgCl (saturated KCl) regarded as the reference electrode, platinum wire (Pt-wire) as the 

counter electrode, rotating disk electrode (RDE) coated with catalyst as the working electrode, 

and 0.1 M KOH as the electrolyte. Before each measurement, the solution was purged with 

high purity Ar or O2 gas for at least 30 minutes to ensure the gas saturation. The catalyst ink 

was prepared by dispersing 5 mg of catalyst powder with the mixed solvent of water-ethanol-

Nafion (v/v/v=2/15/1) by sonication for 30 minutes. The reference Pt/C (20%) cathode was 

prepared by same method. All the potentials in this work were converted to the reversible 

hydrogen electrode (RHE) according to the Nernst equation 

(ERHE=E(Ag/AgCl)+0.059×pH+0.197). For oxygen reduction reaction (ORR), the cyclic 

voltammetry (CV) tests were performed over voltages ranging from 0.2 to -0.8V (vs. 

Ag/AgCl) at a scan rate of 50 mV s-1 using Ar or O2-saturated 0.1 M KOH electrolyte. For 

oxygen evolution reaction (OER), CV tests was obtained in the O2-saturated 1 M KOH 

electrolyte at the potential from 0.9 to 0.3 V (vs. Ag/AgCl) at a scan rate of 10 mV s-1. In 

ORR polarization measurement, linear sweep voltammetry (LSV) using RRDE or RDE were 

conducted with the electrode rotated from 400 to 2500 rpm, and contrast with the current in 

Ar-saturated 0.1 M KOH electrolyte. The electron transfer number (n) was calculated 

according to the Koutecky-Levich Equation:[7]
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Where J is the current density, JL is the current that was measured; JK represents the kinetic-

limiting current and is the rotation speeds of electrode.

In equation S2[8], n is the total number of transferred electrons during the oxygen reduction 

process; F is Faradaic constant (F = 96485 C mol-1), C0 is the O2 concentration (solubility) in 

0.1 M KOH electrolyte (1.2×10-6 mol cm-3 ); D0 is the O2 diffusion coefficient (1.90×10-5 

cm2 s-1), and V is the kinematic viscosity of the O2 saturated 0.1 M KOH solution (0.01 cm 2 s-

1).

The LSV for OER were performed from 0.9 to 0.3 V at 1600 rpm in Ar-saturated 

electrolyte and calibrated by an average of forward and backward currents. To study the 

catalysts/electrolyte interface, the electrochemical impedance spectroscopy (EIS) was 

performed in the frequency of 0.01-100 kHz with an AC voltage with 5mV amplitude. The 

methanol crossover measurements were also recorded by chronoamperometry (i-t) at the half-

potential with a rotation speed of 1600 rpm with the addition of 10 mL methanol into 0.1 M 

KOH electrolyte at around 400 s. The rotating ring disk electrode (RRDE) measurements 

were performed to calculate the yield of H2O2 (%) and the electron transfer number (n) based 

on the equations as follows:
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In equation S3 and S4, IR is the ring current, ID is the disk current, and the collection efficiency of 

the Pt ring (N=0.4581).[9-10]   

Zn-air battery

Zn-air battery performance was tested using a home-made liquid Zn-air battery.[11-13] The air-

cathodes for primary Zn-air battery were prepared by coating the catalysts (1.5 mg cm-2) on a 

hydrophobic carbon paper, while the polished Zn plate was used as the anode, evaluated in 6 M 

KOH electrolyte containing 0.2 M Zn(OAc)2. Cycling test was performed using recurrent 

galvanostatic pulses for 10 min of discharge followed by 10 min of charge at 10 mA cm-2 (LAND 

(S3)

(S4)

6/13/2
00n62.0  VDFCB ）（ (S2)



CT2001A Model Battery Test System, LANHE Company, Wuhan). The energy density was 

calculated according to the followed Equation S5: [14]

      (S5)   VIP *

Where I represents the discharge current density and V refers to the corresponding voltage. The 

polarization curves of charge and discharge were performed by the LSV method at a scan rate of 

10 mV s-1. The specific capacity was determined using the galvanostatic discharge plot and 

calculated as Equation S6:[15]

    (S6)
 Znconsumed ofWeight 

)gAh capacity(m Specific)gAh capacity(m Specific
-1

1- 

All battery tests were carried out on LAND CT 2001A multichannel battery testers at room 

temperature in oxygen atmosphere. All the potentials throughout this paper were referred to the 

potential of the Zn/Zn2+ standard couple.

Section 2. TGA and XRD 
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Figure S1. a) TG of CPP; b) XRD of PF-X series catalysts; c) XRD of BSMP-800.

Section 3. X-ray Photoelectron Spectra (XPS)
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Figure S2. a) High-resolution C 1s XPS spectra of CPP-800; b) High-resolution N 1s XPS spectra of 

CPP-800; c) High-resolution O 1s XPS spectra of CPP-800; d) High-resolution Fe 2p XPS spectra of 

CPP-800; e) High-resolution C 1s XPS spectra of CPP-1000; f) High-resolution N 1s XPS spectra of 

CPP-1000; g) High-resolution O 1s XPS spectra of CPP-1000; h) High-resolution Fe 2p XPS spectra of 

CPP-1000.

Section 4. EDS

Figure S3. EDS of PM-900.

Section 5. Electrochemical Performance 
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Figure S4. CV curves of CPP-900, CPP-800, CPP-1000 and Pt/C in oxygen saturated 0.1 M KOH.

Figure S5. Iring and Idisk of CPP-900 in 0.1M KOH
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Figure S6. LSV curve of Pt/C recorded before and after the i-t test.
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Figure S7. LSV curve of CPP-900 recorded before and after the injection of CH3OH in 0.1 M 
KOH.
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Figure S8. LSV curve of Pt/C recorded before and after the injection of CH3OH in 0.1 M KOH.
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Figure S9. LSV curve of CPP-900 recorded before and after the injection of SCN-1.



Figure S10. a) LSV polarization curves on OER of CPP-900 recorded 1 M KOH at 1600 rpm; b) 
Tafel plots of CPP-900 and commercial IrO2.

Figure S11. Iring and Idisk of CPP-900 in 0.1 M HClO4 
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Figure S12. LSV curve of CPP-900 recorded before and after the injection of CH3OH in 0.1 M 
HClO4.



Section 6. Supporting Tables 

Table S1. The surface element contents of CPP-X catalysts calculated by the XPS spectra.

Sample C (at%) O (at%) N (at%) Fe (at%) P (at%)

CPP-800 82.35 11.96 4.78 0.53 0.37

CPP-900 82.45 11.13 5.43 0.41 0.59

CPP-1000 88.53 8.84 2.17 0.52 0.3

Table S2. Porosity Parameters of prepared polymers and corresponding catalysts

Sample BET (m2/g) Vtotal (cm3/g) Average Pore size(nm)

CPP 57.73 0.1963 3.54

CPP-800 403.1 0.417 2.77

CPP-900 1002.6 0.837 1.31

CPP-1000 319.7 0.382 2.87

Table S3. The comparison of the electrochemical performance toward ORR among other 
recently reported electrocatalysts in 0.1 M KOH.

Sample Onset

potential

(Eonset, V)

Half-wave     

potential            

(E1/2,V)

Current density    

(mA cm-2;at 0.5 V)

Ref.

CPP-900 0.986 0.848 5.24 This work

NCF-900 1.05 0.89 8.66 [16]

Ni-NC700 0.86 0.75 2.05 [17]

CP-CMP-900 0.997 0.85 4.78 [18]

α-Fe2O3/Fe@NPC 1.01 0.88 5.06 [19]

FeN@FCS-900 0.93 0.78 4.99 [20]

PBSCF 0.7 0.5 2.5 [21]

cal-FeZIF-NSC-0.2 0.97 0.78 5.07 [22]



Table S4. The comparison of the electrochemical performance toward ORR among other 
recently reported electrocatalysts in 0.1 M HClO4.

Sample Onset

potential

(Eonset, V)

Half-wave     

potential            

(E1/2,V)

Current density    

(mA cm-2;at 0.5 V)

Ref.

CPP-900 0.792 0.62 5.91 This work

N-FeGly/C 0.8 0.63 4.4 [23]

[Fe(NCs)]_950 0.8 0.7 4.75 [24]

Fe-N-C@MXene 0.832 0.777 5.7 [25]

(Fe,Co)/N-C 1.06 0.863 5.69 [26]

Fe2P/FeP-PNC 0.92 0.7 5.31 [27]

Co-Fe SAs/NC 0.86 0.75 6.25 [28]

Co/Co3O4@C 0.782 0.672 5.32 [29]
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