NiFe double hydroxide coated on sulfur-modified NiMoO₄ nanorods as core-shell structured catalysts for oxygen evolution reaction

Mengyang Li^a, Mingyi Zhang^{a, *}, Xin Chang^a, Xinyao Ding^a and Jingbo Mu^{b,*}

1 Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, People's Republic of China.

2 Key Laboratory of New Inorganic Nonmetallic Composite of Handan, College of Materials Science and Engineering, Hebei University of Engineering, Handan, 056038, China Table S1 The overpotentials of NiFe LDH@S-NiMoO₄ are compared with related catalytic electrodes in 1 M KOH electrolyte solution.

Catalysts	Current density	Overpotential	Ref.
CoP ₃ /NiMoO ₄ heterostructures on Ni foam	10 mA cm ⁻²	347 mV	(1)
Fe-doped NiMoO ₄	10 mA cm ⁻²	299 mV	(2)
FeOOH modified NiMoO ₄ nanowires	100 mA cm ⁻²	253 mV	(3)
Fe-S-NiMoO ₄ / MoO ₃ on Ni foam	100 mA cm ⁻²	249 mV	(4)
N-NiMoO ₄ /NiS ₂ Nanowires/Nanosheets	10 mA cm ⁻²	283 mV	(5)
Ni ₉ S ₈ /MoS ₂ Nanosheets Decorated NiMoO ₄ Nanorods	10 mA cm ⁻²	360 mV	(6)
NiFe ₂ O ₄ /NiMoO ₄ Nanorods on Ni foam	50 mA cm ⁻²	270 mV	(7)
NiMoO ₄ @Co ₃ O ₄ Core–Shell Nanorods	100 mA cm ⁻²	282 mV	(8)
Core/shell -structured NiMoO ₄ @ MoSe ₂ /NixSey Nanorod on Ni Foam	10 mA cm ⁻²	290 mV	(9)
P/NiFe doped NiMoO ₄ micro-pillars arrays	100 mA cm ⁻²	360 mV	(10)
P-doped Ni(OH) ₂ /NiMoO ₄ hierarchical nanosheet arrays grown on Ni foam	100 mA cm ⁻²	380 mV	(11)
Oxygen vacancy enriched NiMoO ₄ nanorods	50 mA cm ⁻²	255 mV	(12)
Ce-Doped Ni–S nanosheets on Ni foam supported NiMoO ₄ micropillars	100 mA cm ⁻²	244 mV	(13)
NiMoO ₄ /NiFe LDH/rGO multicomponent nanosheets	10mA cm ⁻²	270 mV	(14)
NiFe ₂ O ₄ -x/NiMoO ₄ nanowire arrays on Ni Foam	600 mA cm ⁻²	326 mV	(15)
Crystalline-Amorphous Ni ₂ P ₄ O ₁₂ /NiMoO _x Nanoarrays	20 mA cm ⁻²	250 mV	(16)
This work	100 mA cm ⁻²	277mV	

Fig. S1 TEM images (a-d) of NiFe LDH_{30min}@S-NiMoO₄, NiFe LDH@S-NiMoO₄, NiFe LDH_{50min}@S-NiMoO₄ and NiFe LDH_{60min}@S-NiMoO₄.

Fig. S2 EDS mapping images (a-c) of NiFe LDH_{30min}@S-NiMoO₄, NiFe LDH_{50min}@S-NiMoO₄ and NiFe LDH_{60min}@S-NiMoO₄.

Fig. S3 Atomic specific gravity of Fe element at different times of electrodeposition.

Fig. S4 XRD patterns of NiFe LDH_{30min}@S-NiMoO₄, NiFe LDH_{50min}@S-NiMoO₄ and NiFe LDH_{60min}@S-NiMoO₄.

Fig. S5. Low-magnification (a) and High-magnification (b) SEM image of NiFe $LDH_{30min}@S-NiMoO_4$.

References

- (1) Y. Wang, L. Zhao, X. Sui, D. Gu and Z. Wang, *Ceramics International*, 2019, **45**, 17128-17136.
- (2) J. Chen, G. Zhao, Y. Chen, K. Rui, H. Mao, S. X. Dou and W. Sun, Chemistry, 2019, 25, 280-284.
- (3) H. Hao, Y. Li, Y. Wu, Z. Wang, M. Yuan, J. Miao, Z. Lv, L. Xu and B. Wei, *Materials Today Energy*, 2022, **23**, 100887.
- (4) Y. Zhang, H. Guo, J. Ren, X. Li, W. Ren and R. Song, *Applied Catalysis B: Environmental*, 2021, **298**, 120582.
- (5) L. An, J. Feng, Y. Zhang, R. Wang, H. Liu, G. C. Wang, F. Cheng and P. Xi, Advanced Functional Materials, 2019, 29, 1805298.
- (6) L. Chen, Z. Deng, Z. Chen and X. Wang, Advanced Materials Interfaces, 2021, 8, 2101483.
- (7) N. Xu, W. Peng, L. Lv, P. Xu, C. Wang, J. Li, W. Luo and L. Zhou, *Materials*, 2022, **15**, 3688.
- (8) G. Solomon, A. Landström, R. Mazzaro, M. Jugovac, P. Moras, E. Cattaruzza, V. Morandi, I. Concina and A. Vomiero, *Advanced Energy Materials*, 2021, **11**, 2101324.
- (9) Z. Zhang, S. Ye, J. Ji, Z. Li and F. Wang, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2020, **599**, 124888.
- (10) S. Zhuang, S. Tong, H. Wang, H. Xiong, Y. Gong, Y. Tang, J. Liu, Y. Chen and P. Wan, *International Journal of Hydrogen Energy*, 2019, **44**, 24546-24558.
- (11) W. Xi, G. Yan, H. Tan, L. Xiao, S. Cheng, S. U. Khan, Y. Wang and Y. Li, *Dalton Transactions*, 2018, 47, 8787-8793.
- (12) Karmakar, K. Karthick, S. S. Sankar, S. Kumaravel, M. Ragunath and S. Kundu, *Journal of Materials Chemistry A*, 2021, **9**, 11691-11704.
- (13) F. Wang, Z. Liu, K. Zhang, Q. Zha and Y. Ni, Dalton Transactions, 2021, 50, 17774-17784.
- (14) L. Jin, Q. Wang, K. Wang, Y. Lu, B. Huang, H. Xu, X. Qian, L. Yang, G. He and H. Chen, *Dalton Transactions*, 2022, **51**, 6448-6453.
- (15) J. Choi, D. Kim, W. Zheng, B. Yan, Y. Li, L. Y. S. Lee and Y. Piao, *Applied Catalysis B: Environmental*, 2021, **286**, 119857.
- (16) J. Wang, J. Hu, S. Niu, S. Li, Y. Du and P. Xu, Small, 2022, 18, 2105972.