Electronic Supporting Information (ESI[†])

Light-driven (cross-)dimerization of terpenes as a route to renewable C₁₅ –

C₃₀ crudes for fuel and lubricant oil applications

Leandro Cid Gomes, ^a Anup Rana, ^a Mathias Berglund, ^b Per Wiklund ^{c*} and Henrik Ottosson ^{a*}

^a Department of Chemistry – Ångström Laboratory, Uppsala University, Box 523, 751 20

Uppsala, Sweden.

^b RISE Research Institutes of Sweden, Brinellgatan 4, Box 857, 501 15 Borås, Sweden. ^c Biobase Sweden AB, Götlundagatan 3, 124 71 Bandhagen, Stockholm, Sweden.

Email: henrik.ottosson@kemi.uu.se, per@cfliquids.eu

Table of Contents

Screening of photosensitizers	3
Solar irradiance	4
Fuel and lubricant oil properties	5
Reaction setups	7
Screening of Photosensitizers	8
Spin density in the triplet state	9
α-Terpinene dimerization	
α-Phellandrene dimerization	
Control experiments	14
Myrcene dimerization	
Myrcene epoxide dimerization	22
Ocimene dimerization	
Light intensity experiments	29
Cross-dimerization with α-phellandrene	
Myrcene and α-phellandrene	
Ocimene and α-phellandrene	41
Ginger oil	44
Cartesian coordinates	47
References	65

Screening of photosensitizers

Table S1 Screening of photosensitizers. Yields of myrcene dimers when 1,1-dinaphthylmethanone8 is used compared to other photosensitizers.

Photosensitizer	ET	Dimers yield
	(kcal mol ⁻¹) ^a	(wt%) ^b
Benzophenone	64.5	18.4
1,1-dinaphthylmethanone	55.5	44.7
Xanthone	70.1	21.6
Thioxanthone ^c	63.5	30.4

^a Adiabatic triplet energies calculated at B3LYP/6-311+G(d,p) level.^{S1, S2}

^b Yield of myrcene dimers after 48 h of irradiation, using 0.5 mol% of photosensitizer. Samples were irradiated in quartz test tubes under 365 nm light (Rayonet photoreactor).

^c Photosensitizer with poor solubility, therefore, the amount added was not fully solubilized.

Entry	8	Dimers yield
	(mol%)	(wt%) ^a
1	0.500	77.1
2	0.250	35.0
3	0.125	35.2
4	0.050	29.9
5	0.010	12.4

Table S2 Optimization of photosensitizer 8 loading.

^a Yields of α -phellandrene dimers after 12 h of irradiation. Samples were irradiated in quartz test tubes under 365 nm light (Rayonet photoreactor).

Solar irradiance

Table S3 Global horizontal yearly average solar irradiance for Stockholm and other places located
in lower latitudes. Data extracted from https://energyplus.net/weather

Location	Global horizontal yearly average
	solar irradiance MJ/m²/year
Accra, Ghana	6,825
Addis Ababa-Bole, Ethiopia	7,321
Barcelona, Spain	5,260
Beijing, China	5,025
Berlin, Germany	3,548
Cairo, Egipt	6,882
Cape Town, South Africa	6,843
Mexico City, Mexico	6,539
Miami, United States of America	6,453
Nairobi, Kenya	6,701
New Delhi, India	7,054
Paris, France	3,845
Phoenix, United Sates of America	7,621
Sao Paulo, Brazil	5,515
Stockholm, Sweden	3,319
Sydney, Australia	5,948
Tehran, Iran	7,703

Table S4 Monthly statistics of the global horizontal yearly average solar irradiance for Stockholm

 Arlanda. Values in Wh/m². Data extracted from https://energyplus.net/weather

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
260	764	1767	3743	5278	5360	5063	3810	2324	1178	447	200

Fuel and lubricant oil properties

Entry	Monomor	Dimon	Heat of combustion of l	nydrogenated dimer
Entry	wonomer	Dimer	kJ mol ⁻¹	MJ kg ⁻¹
1	α-Phellandrene	1a	11,739.21	42.46
2	α-Phellandrene	1c	11,695.83	42.30
3	Myrcene	2a (cis)	12,142.34	43.29
4	Myrcene	2a (trans)	12,151.44	43.32
5	Myrcene	2g	12,066.60	43.02
6	Myrcene	2k	12,115.98	43.19
7	Ocimene	3h	12,089.65	43.10
8	Ocimene	3k	12,125.64	43.23

Table S5 Computed heats of combustion.^a

^a Calculated according to the procedure described in the reference S4, at M06-2X/6-31+G(d,p) level.^{S2-S4} The Self-Consistent Reaction Field Solvent method (SCRF) was used to model the solvent toluene, using the Solvation Model Based on Density (SMD).

Table S6 Fuel and lubricant oil properties meas	sured for the hydrogenated dimers produced in this
study.	

Physical Property	HAPD	HMD	HAPID	HGOD
Molecular formula	C ₂₀ H ₃₆	C ₂₀ H ₄₀	C ₂₀ H ₃₆	C ₃₀ H ₅₆
			$C_{15}H_{28}$	
Hydrogen content, % mass	13.12	14.37	13.74	10.85
Gravimetric Net Heat of Combustion	43.09	43.74	43.30	-
(NHOC), MJ/kg				
Density at 25 °C, g/mL	0.9314	0.8606	0.9042	-
Volumetric NHOC, MJ/L at 25 °C	40.13	37.65	39.15	-
Kinematic viscosity at -20 °C, mm ² /s	> 10 ⁴	475.4	209.7	-
Kinematic viscosity at 40 °C, mm ² /s	41.1	12.7	6.45	303
Kinematic viscosity at 100 °C, mm ² /s	4.16	2.89	-	14.7
Viscosity Index	-	59	-	-
Pour point, °C	-21	< -45	< -45	-15

Reaction setups

Fig. S1 Custom-made setup (CMS) with FEP tubing used in the photoreactions. **A) CMS I**, FEP tubing dimensions: O.D. \times I.D. : 3.18 mm \times 2.1 mm - loop volume = 20 mL. **B) CMS II**, FEP tubing dimensions: O.D. \times I.D. : 7.94 mm x 6.35 mm - loop volume = 400 mL. **C) CMS III**, FEP tubing dimensions: O.D. \times I.D. : 3.18 mm \times 2.1 mm - loop volume = 120 mL **D) CMS IV**, flat spiral FEP tubing setup used in experiments with simulated and natural sunlight. FEP tubing dimensions: O.D. \times I.D. : 3.18 mm \times 2.1 mm - loop volume = 10 mL. **E)** A custom-made 30 cm x 30 cm LED panel with light intensity control used in the light intensity experiments. The panel has nine 365 nm LED lamps equally spaced from each other (LZ1-10UV0R, OSRAM Opto Semiconductors Inc.).

Screening of Photosensitizers

Fig. S2 A) UV-Vis absorption spectra of the photosensitizers tested. Solvent: cyclohexane. B) Near-UV region zoomed in. C) Zoomed in region showing the absorption of benzophenone and xanthone at 365 nm.

Spin density in the triplet state

Fig. S3 Spin densities in the first triplet (T_1) state of the terpenes studied. Geometries and energies calculated at the (U)M06-2X/6-311+G(d,p) level.^{S2, S3} The diene structures of **2** and **3** show twisted geometries with the allyl segment at the termini of the hydrocarbon chain. The other compounds (endocyclic dienes) do not have twisted structures in their T_1 states.

α -Terpinene dimerization

Fig. S4 ¹H NMR spectra of crude sample of α -terpinine 5 irradiated with 8 for 48 h (top) and starting material (bottom). The inset highlights the increase of aromatic content due to aromatization of 5 and photoreduction of 8. The arrow indicates the aromatic product from the dehydrogenation of 5.

Fig. S5 Chromatogram trace of distillated sample of α -terpinine **5** irradiated with **8** for 48 h (**top**). Some C10 starting material was still present in the sample. The arrow indicates the peak of the reduced 1,1-dinaphthylmethanone **8** due to abstraction of H-atoms from **5**. The mass spectrum for that peak is also displayed (**bottom**), where it can be found the M⁺ = 284.1 m/z.

α-Phellandrene dimerization

Fig. S6 Chromatogram trace for α -phellandrene 1 and 1,1-dinaphthylmethanone 8 sample irradiated for 12 h under 365 nm light (Rayonet photoreactor). The corresponding mass spectrum of the dimers is also shown (RT = 7.5 - 9.0 min).

Fig. S7 ¹H NMR spectra for starting material α -phellandrene 1 (top, blue) compared to α -phellandrene 1 and 1,1-dinaphthylmethanone 8 sample irradiated for 12 h under 365 nm light (bottom, red). Inset: the black arrow indicates the multiplet at 5.44 ppm which is absent after dimerization.

Control experiments

Fig. S8 UV-Vis absorption spectra of monoterpene reaction mixtures with photosensitizer 8, measured before and after irradiation. In α -phellandrene reaction, the amount of 8 in the reaction was 0.2 mol%, while for myrcene and ocimene this amount was of 0.5 mol%. For the absorption spectra measurement the samples were diluted in cyclohexane to reach a concentration of 8 of about 100 μ M.

Fig. S9 GC-MS trace for α -phellandrene 1 (top), myrcene 2 (middle) and ocimene 3 (bottom) samples irradiated at 365 nm light, in quartz test tube, for 48h without photosensitizer added.

Myrcene dimerization

Fig. S10 Myrcene 2 and 1,1-dinaphthylmethanone 8 sample before irradiation. CDCl₃ was used as deuterated solvent and the spectrum was referenced to its residual peak.

Fig. S11 ¹H NMR spectrum of myrcene **2** and 1,1-dinaphthylmethanone **8** crude sample after irradiation (365 nm, 48 h). Full spectrum on top, and expansion of alkene region at the bottom. ¹H NMR for quantification of unreacted myrcene (89.1 mg of crude sample) with benzophenone used as standard (5.6 mg). CDCl₃ was used as deuterated solvent and the spectrum was referenced to its residual peak. Reaction carried out in the coiled FEP setup.

Fig. S12 Chromatogram trace for myrcene **2** and 1,1-dinaphthylmethanone **8** crude sample after irradiation ($\lambda = 365$ nm, t = 48 h) with added benzophenone used as standard on the qNMR (see Fig. S9). Byproduct **9**, as well as the unreacted myrcene are indicated.

Fig. S13 C_{10} fraction recovered after distillation of crude reacted mixture of myrcene **2** and 1,1dinaphthylmethanone **8** (365 nm, 48 h). ¹H NMR for quantification of recovered 5,5-dimethyl-lvinylbicyclo[2.1.1]hexane **9** produced as byproduct during the reaction (63.3 mg of recovered C_{10} sample) with benzophenone used as standard (5.8 mg). Recovered unreacted myrcene was also verified. CDCl₃ was used as deuterated solvent and the spectrum was referenced to its residual peak.

Fig. S14 GC-MS chromatogram of dimers produced through myrcene **2** dimerization ($\lambda = 365$ nm, t = 48 h). The light fraction was removed by distillation under reduced pressure. **Bottom:** Mass spectrum of dimers.

Fig. S15 ¹H NMR of dimers produced through myrcene 2 dimerization ($\lambda = 365$ nm, t = 48 h, top) with expansion of the alkene region (bottom). The light fraction was removed by distillation under reduced pressure. CDCl₃ was used as deuterated solvent and the spectrum was referenced to its residual peak. On the chromatogram it is possible to see trace amounts of unreacted myrcene that remained after the distillation.

Myrcene epoxide dimerization

Fig. S16 ¹H NMR for purity quantification of myrcene epoxide **10** (11.4 mg) with benzophenone used as standard (11.3 mg). CDCl3 was used as deuterated solvent and the spectrum was referenced to its residual peak. m/m purity for myrcene epoxide was found to be of 85%.

Fig. S17 ¹H NMR for quantification of unreacted myrcene epoxide 10 on the crude mixture after irradiation $\lambda = 365$ nm for 48 h (49.5 mg of crude sample) with benzophenone used as standard (4.1 mg). CDCl₃ was used as deuterated solvent and the spectrum was referenced to its residual peak. The unreacted myrcene epoxide 10 was found to be of 6.7 wt%.

Fig. S18 ¹H NMR of dimers produced through myrcene epoxide **10** dimerization ($\lambda = 365$ nm, t = 48 h). The light fraction was removed by distillation under reduced pressure. CDCl₃ was used as deuterated solvent and the spectrum was referenced to its residual peak.

Fig. S19 Chromatogram trace for myrcene epoxide 10 starting material (top) and 48 h irradiated crude mixture of 10 with 8 ($\lambda = 365$ nm, t = 48 h, bottom). A small amount of myrcene remained after epoxidation and can be seen on the starting material chromatogram (top) which is partially converted to the small amount of 5,5-dimethyl-1-vinylbicyclo[2.1.1]hexane 9 on the crude reacted mixture (bottom). These chromatograms also show that the impurities from the epoxidation reaction remained unreacted.

Ocimene dimerization

Fig. S20 Top: GC-MS chromatogram of dimers produced in the ocimene 3 dimerization ($\lambda = 365$ nm, t = 48 h). The light fraction was removed by distillation under reduced pressure. Bottom: Mass spectrum of dimers.

Fig. S21 ¹H NMR spectrum of dimers produced in the ocimene **3** dimerization ($\lambda = 365$ nm, t = 48 h). The light fraction was removed by distillation under reduced pressure. CDCl₃ was used as deuterated solvent and the spectrum was referenced to its residual peak.

Fig. S22 ¹H NMR spectra of ocimene **3** before (**top**) and after irradiation (**bottom**), $\lambda = 365$ nm, t = 48 h. The *E*/*Z* ratio of ocimene was calculated based on the integrals showed on the spectra, for the proton of the conjugated diene moiety. The *E*-isomer has chemical shift at 6.35 ppm, and the *Z*-isomer has chemical shift at 6.80.

Light intensity experiments

Fig. S23 ¹H NMR spectra of crude mixture of α -phellandrene and 0.2 mol% of 8, in different irradiation times. Light intensity: 6.5 mW s⁻².

Fig. S24 ¹H NMR spectra of crude mixture of α -phellandrene and 0.2 mol% of 8, in different irradiation times. Light intensity: 2.0 mW s⁻².

Fig. S25 ¹H NMR spectra of crude mixture of α -phellandrene and 0.2 mol% of **8**, in different irradiation times. Light intensity: 4.0 mW s⁻².

Cross-dimerization with α -phellandrene

Myrcene and α-phellandrene

Fig. S26 Cross-dimerization between α -phellandrene 1 and myrcene 2 (coiled FEP tubing, $\lambda = 365$ nm, t = 48 h, 1:1 equivalent). Top: GC-MS trace of crude sample after irradiation. Bottom: ¹H NMR spectra of sample before irradiation (blue), mixture after irradiation (green) and dimers (red) after distillation of C10 fraction.

Fig. S27 Cross-dimerization between α -phellandrene 1 and myrcene 2 (coiled FEP tubing, 1:1 equivalent, $\lambda = 365$ nm, t = 48 h). Expansion of ¹H NMR spectra of sample before irradiation (top), crude mixture after irradiation (middle) and dimers (bottom) after distilation of C₁₀ fraction (see Fig. S16, bottom). Green trace (middle) reveals that no myrcene was detected after irradiation.

Fig. S28 Cross-dimerization between α -phellandrene **1** and myrcene **2** (coiled FEP tubing, 1:0.5 equivalent, $\lambda = 365$ nm, t = 48 h). **Top:** GC-MS trace of crude sample after irradiation. **Bottom:** ¹H NMR spectrum of crude sample after irradiation. Signals between 7.5 and 8.0 ppm are related to benzophenone added to the NMR sample as external standard for qNMR.

Fig. S29 Cross-dimerization between α -phellandrene 1 and myrcene 2 (coiled FEP tubing, 1:0.5 equivalent). ¹H NMR spectrum of sample before irradiation. Signals between 7.5 and 8.0 ppm are related to benzophenone added to the NMR sample as external standard for qNMR.

Fig. S30 Cross-dimerization between α -phellandrene **1** and myrcene **2** (coiled FEP tubing, 1:0.5 equivalent, $\lambda = 365$ nm, t = 48 h). ¹H NMR spectrum of dimers after C₁₀ fraction evaporation.

Fig. S31 Cross-dimerization between α -phellandrene **1** and myrcene **2** (coiled FEP tubing, 1:0.5, equivalent, $\lambda = 365$ nm, t = 48 h). ¹H NMR spectrum of recovered C₁₀ fraction after irradiation. Benzophenone (8.0 mg) was added to 52.6 mg of sample as external standard for qNMR.

Fig. S32 Cross-dimerization between α -phellandrene **1** and myrcene **2** (coiled FEP tubing, 1:0.5, equivalent, $\lambda = 365$ nm, t = 24 h. **Top:** GC-MS trace of crude sample after irradiation. **Bottom:** ¹H NMR spectrum of crude sample after irradiation. Signals between 7.5 and 8.0 ppm are related to benzophenone added to the NMR as external standard for qNMR.

Fig. S33 Cross-dimerization between α -phellandrene **1** and myrcene **2** (coiled FEP tubing, 1:0.5, equivalent, $\lambda = 365$ nm, t = 24 h). ¹H NMR spectrum of dimers after C₁₀ fraction evaporation.

Fig. S34 Cross-dimerization between α -phellandrene **1** and myrcene **2** (coiled FEP tubing, 1:0.5, equivalent, $\lambda = 365$ nm, t = 24 h). ¹H NMR spectrum of recovered C₁₀ fraction after irradiation. Benzophenone (7.1 mg) was added to 45.1 mg of sample as external standard for qNMR.

Ocimene and α-phellandrene

Fig. S35 Cross-dimerization between α -phellandrene 1 and ocimene 3 (coiled FEP tubing, 1:0.5, equivalent, $\lambda = 365$ nm, t = 48 h). GC-MS trace of crude sample after irradiation.

Fig. S36 Cross-dimerization between α -phellandrene **1** and ocimene **3** (coiled FEP tubing, 1:0.5 equivalent, $\lambda = 365$ nm, t = 48 h). ¹H NMR spectrum of crude mixture after irradiation. Benzophenone (5.6 mg) was added to 64.4 mg of sample as external standard for qNMR.

Fig. S37 Cross-dimerization between α -phellandrene and ocimene (coiled FEP tubing, 1:0.5, equivalent, $\lambda = 365$ nm, t = 48 h). ¹H NMR spectrum of dimers after C₁₀ fraction evaporation.

Ginger oil

Fig. S38 ¹H NMR spectra of starting material of ginger oil sample (C_{15} -fraction), with internal standard for conjugated dienes quantification. Integrated peaks are for benzophenone (internal standard) and sesquiterpenens with conjugated diene moieties.

Fig. S39 Photosensitized dimerization of sesquiterpenes in ginger oil ($\lambda = 365$ nm, t = 48 h). GC-MS trace of the C₃₀ dimers in the sample after irradiation and after removing the unreacted starting material and the photosensitizer.

Cartesian coordinates

M06-2X/6-311+G(d,p)

α-Phellandrene (1)					
State: S ₀					
Absolute Gibbs Free energy at 278 K: -390.386641 a.u.					
С	0.789828	-0.757748	-0.122345		
С	2.321126	-0.708614	-0.173063		
С	2.846279	0.700024	-0.053901		
С	0.967829	1.217772	1.369586		
С	0.303874	0.11424	1.014543		
Н	2.72859	-1.314467	0.652577		
Н	2.679837	-1.159488	-1.09975		
Н	0.411589	-0.315869	-1.060718		
Н	0.596936	1.85302	2.168691		
Н	-0.615091	-0.151678	1.526518		
Н	3.7871	0.947068	-0.536964		
С	2.207816	1.616563	0.681896		
С	2.702046	3.021379	0.877336		
Н	2.876973	3.223541	1.938366		
Н	3.633108	3.192529	0.335927		
Н	1.960406	3.745975	0.529123		
С	0.228623	-2.190653	-0.031832		
Н	0.438639	-2.562569	0.979568		
С	0.891846	-3.133933	-1.037863		
Н	1.949637	-3.291862	-0.822339		
Н	0.40088	-4.109784	-1.026881		
Н	0.807636	-2.729755	-2.052535		
С	-1.286082	-2.201236	-0.253892		
Н	-1.689658	-3.207373	-0.119208		
Н	-1.817952	-1.536787	0.428984		
Н	-1.516332	-1.882813	-1.275636		

α-Phellandrene (1)

State: T₁

Absolute Gibbs Free energy at 278 K: -390.307618 a.u.

С	0.732769	-0.751188	-0.164303
С	2.279684	-0.634744	-0.300843
С	2.733496	0.77783	-0.228202
С	0.943382	1.332025	1.309598
С	0.266533	0.110125	0.9641

Η	2.71659	-1.22057	0.523349
Η	2.616486	-1.095204	-1.231138
Η	0.317436	-0.364491	-1.110329
Η	0.496452	1.97689	2.059951
Η	-0.583836	-0.19992	1.557174
Η	3.495744	1.148743	-0.902737
С	2.119173	1.691214	0.735684
С	2.826548	2.975042	1.044061
Η	2.267258	3.576608	1.761411
Η	3.824365	2.78148	1.451078
Η	2.965057	3.565071	0.131622
С	0.251009	-2.208547	-0.018942
Η	0.54039	-2.548767	0.984215
С	0.897166	-3.137042	-1.049857
Η	1.97323	-3.238429	-0.900906
Н	0.458614	-4.135767	-0.990243
Н	0.727506	-2.759338	-2.063972
С	-1.271981	-2.295524	-0.147898
Н	-1.614213	-3.322564	-0.000764
Н	-1.792463	-1.664618	0.574062
Н	-1.580913	-1.980831	-1.149985

Myrcene (2)

State: S₀

Absolute Gibbs Free energy at 278 K: -390.359160 a.u.

С	2.650312	3.073229	-1.835955
Η	1.728194	3.429569	-1.391319
Η	3.062191	3.663361	-2.645189
С	3.26101	1.963661	-1.418551
Η	4.184289	1.65756	-1.904381
С	2.799905	1.083453	-0.331967
С	3.523318	0.002295	-0.021522
Η	3.229467	-0.690976	0.756524
Η	4.437225	-0.220505	-0.561491
С	1.526653	1.469965	0.382588
Н	1.668464	2.470139	0.806606
Η	0.729024	1.573165	-0.363638
С	1.061333	0.513153	1.47834
Η	0.22949	0.985703	2.011858

Η	1.86157	0.38823	2.215658
С	0.617617	-0.826444	0.936112
Н	0.562229	-0.903194	-0.148713
С	0.288948	-1.898191	1.658817
С	0.323255	-1.922721	3.163138
Н	0.626976	-0.969309	3.594046
Н	-0.665056	-2.176237	3.559924
Н	1.012373	-2.696258	3.517546
С	-0.14966	-3.184021	1.012023
Н	-1.157786	-3.457843	1.339371
Н	-0.149064	-3.107067	-0.075779
Η	0.512051	-4.007023	1.300872

Myrcene (2)

State: T₁

Absolute Gibbs Free energy at 278 K: -390.276146 a.u.

С	2.382087	2.120228	-2.213872
Н	1.588842	2.777967	-1.884125
Н	2.697948	2.21067	-3.244328
С	2.983188	1.207417	-1.38089
Н	3.78439	0.603759	-1.801081
С	2.685256	0.970971	-0.033018
С	3.49118	0.00024	0.721471
Н	4.373254	0.312342	1.270941
Η	3.215865	-1.047575	0.756026
С	1.606876	1.73224	0.697289
Н	2.052978	2.609726	1.185513
Η	0.876147	2.115107	-0.020021
С	0.871341	0.892699	1.755744
Н	0.1117	1.52834	2.223833
Н	1.567196	0.603843	2.544508
С	0.206366	-0.305854	1.141016
Н	-0.461356	-0.073854	0.31118
С	0.346997	-1.592147	1.470588
С	1.222619	-2.10905	2.581192
Н	1.823048	-1.335287	3.056328
Н	0.609277	-2.58789	3.351394
Н	1.900394	-2.879242	2.198214
С	-0.399336	-2.668463	0.726375
Н	-1.027664	-3.246916	1.411304
Н	-1.034134	-2.25195	-0.056197
Н	0.299868	-3.373626	0.265536

(E)-Ocimene (3)

State: S₀

Absolute Gibbs Free energy at 278	8 K: -390.359441 a.u.
-----------------------------------	-----------------------

C	2 370704	0.926642	-2.709903
0	2.370701	0.720012	2.107703

Н	1.571661	0.222341	-2.503841
Н	2.428644	1.339391	-3.709851
С	3.253841	1.260788	-1.77119
Н	4.074856	1.926884	-2.032767
С	3.246195	0.762593	-0.37783
С	2.093324	0.650633	0.293196
Н	1.184088	0.960864	-0.217914
С	1.874079	0.107234	1.680541
Н	1.322436	0.841306	2.271716
Н	2.824139	-0.055478	2.192401
С	1.121916	-1.199154	1.613437
Н	1.710156	-2.039154	1.248475
С	-0.16328	-1.418666	1.900547
С	-1.131235	-0.370322	2.380015
Η	-0.700185	0.627857	2.429641
Η	-1.997912	-0.33101	1.712773
Η	-1.510684	-0.630707	3.373298
С	-0.765545	-2.791546	1.754867
Η	-1.59268	-2.775445	1.038004
Η	-0.029498	-3.521396	1.416538
Η	-1.179215	-3.133652	2.708937
С	4.61074	0.431115	0.169824
Η	4.588801	0.114343	1.21054
Η	5.072322	-0.364685	-0.421776
Η	5.265857	1.304339	0.094581

(E)-Ocimene (3) - internal twisted - most stable

State: T₁

Absolute Gibbs Free energy at 278 K: -390.283875 a.u.

С	1.529565	1.752837	-1.528221
Н	0.7896	1.031291	-1.203826
Н	1.190808	2.597929	-2.111785
С	2.864346	1.5875	-1.228607
Η	3.565155	2.328439	-1.607128
С	3.39915	0.539772	-0.480225
С	2.539853	-0.489296	0.125293
Н	2.380709	-1.432911	-0.389379
С	2.152246	-0.388296	1.574555
Η	1.760132	0.618953	1.763463
Η	3.05262	-0.464263	2.201694
С	1.166265	-1.446613	2.00105
Н	1.582167	-2.326184	2.486707
С	-0.151223	-1.409049	1.792547
С	-0.855052	-0.270817	1.104445
Н	-0.200261	0.577645	0.909422
Н	-1.264833	-0.608517	0.14639
Н	-1.701032	0.074452	1.706539
С	-1.04838	-2.53725	2.224725

Н	-1.594776	-2.944267	1.36797
Н	-0.483788	-3.345792	2.690292
Н	-1.797572	-2.181595	2.939094
С	4.877644	0.426379	-0.237378
Н	5.09962	0.419523	0.835561
Н	5.264665	-0.515413	-0.642182
Н	5.425896	1.250658	-0.696756
(<i>E</i>)-O State:	cimene (3)- term	inal twisted - less	s stable
Absol	ite Gibbs Free en	ergy at 278 K: -39	90.278587 a.u.
10000			
С	3.668424	-0.932917	-2.396171
Н	2.82325	-1.273364	-2.984005
Н	4.579957	-1.517747	-2.449681
C	3.623723	0.335497	-1.668876
н	3 918444	1 23422	-2 209564
C	3 233183	0.476326	-0 342375
C C	2 8/3/0/	-0.62299	0.41761
с и	2.843404	1 602084	0.052343
n C	2.037033	-1.002084	-0.052345
U U	2.407363	-0.373726	1.03299
н	2.158554	0.440109	2.135252
Н	3.25153	-0.84895	2.499165
C	1.256667	-1.51/566	2.141806
H	1.483331	-2.402307	2.73117
С	0.005221	-1.352308	1.709551
С	-0.435448	-0.181471	0.873321
Н	0.362227	0.54052	0.702002
Н	-0.786103	-0.528447	-0.104065
Н	-1.277374	0.33038	1.350092
С	-1.077126	-2.348091	2.027039
Н	-1.510438	-2.751895	1.106479
Н	-0.698294	-3.178557	2.623764
Н	-1.892435	-1.868837	2.578171
С	3.236448	1.858711	0.272939
Н	2.230561	2.159747	0.5799
Н	3.873179	1.896645	1.159936
Н	3.603096	2.59802	-0.439374
(Z)-O	cimene (3)		
State:	S_0		
Absol	ute Gibbs Free en	ergy at 278 K: -39	90.359421 a.u.
С	4.710119	-0.422269	1.23214
Н	4.027344	-1.242692	1.424691
Н	5.67438	-0.450317	1.725697
С	4.385175	0.568931	0.405122
Н	5.124495	1.342072	0.199054
С	3.113535	0.692358	-0.338505

С	1.900816	0.572912	0.215098
Н	1.038386	0.671028	-0.442628
С	1.560817	0.320178	1.660531
Н	0.829101	1.064265	1.983155
Н	2.448271	0.452029	2.282571
С	1.012944	-1.071894	1.854326
Н	1.757726	-1.865299	1.820016
С	-0.262191	-1.432606	2.017011
С	-1.428494	-0.481416	2.050037
Н	-1.147149	0.555093	1.873019
Н	-2.16289	-0.766473	1.290192
Н	-1.938266	-0.538921	3.017141
С	-0.644064	-2.880302	2.181349
Н	-1.326614	-3.192225	1.384383
Н	0.229351	-3.532865	2.162563
Н	-1.170691	-3.034421	3.128658
С	3.279364	1.004674	-1.805242
Н	2.3138	1.114292	-2.299824
Н	3.843033	1.933299	-1.938834
Н	3.841942	0.21289	-2.307802

(Z)-Ocimene (3) - internal twisted - most stable

State: T₁

Absolute Gibbs Free energy at 278 K: -390.283664 a.u.

С	5.277577	-0.615592	0.31377
Н	4.786687	-1.424536	0.841925
Н	6.358279	-0.619416	0.277598
С	4.548941	0.378236	-0.302041
Н	5.094947	1.156951	-0.83013
С	3.15722	0.467434	-0.306377
С	2.322779	-0.506575	0.41203
Н	1.941728	-1.387721	-0.094923
С	1.987127	-0.292845	1.860897
Н	1.62508	0.736818	1.995689
Н	2.910169	-0.340692	2.454291
С	0.982725	-1.28006	2.40277
Н	1.365498	-2.052831	3.06447
С	-0.318897	-1.290706	2.108881
С	-0.971987	-0.289291	1.194293
Н	-0.27596	0.46198	0.822091
Н	-1.410039	-0.799131	0.330019
Н	-1.792639	0.21867	1.710841
С	-1.248245	-2.32853	2.677483
Н	-1.732723	-2.89388	1.875096
Н	-0.720738	-3.030183	3.324495
Н	-2.045933	-1.854575	3.258244
С	2.442504	1.580292	-1.017725
Н	1.774386	1.179767	-1.788301

Н	1.81141	2.144779	-0.321402
Н	3.14035	2.273958	-1.49007
(Z)-Oci	mene (3) - termin	al twisted - less st	table
State: T	1		
Absolute	e Gibbs Free energ	gy at 278 K: -390.2	278340 a.u.
С	3.122931	-0.978967	-2.338035
Н	2.208435	-1.249653	-2.853976
Н	3.983388	-1.623694	-2.478456
С	3.229439	0.275342	-1.592986
Н	3.53867	1.162002	-2.145334
С	2.96458	0.417099	-0.235902
С	2.565315	-0.667482	0.540173
Н	2.470794	-1.635896	0.057552
С	2.257052	-0.618751	2.008196
Н	2.087117	0.413565	2.327239
Н	3.130573	-0.964293	2.575607
С	1.069653	-1.482616	2.381169
Н	1.281106	-2.393216	2.935797
С	-0.198793	-1.220341	2.060892
С	-0.623251	-0.004357	1.282744
Н	0.206908	0.663024	1.054041
Н	-1.07947	-0.305567	0.334179
Н	-1.382753	0.555619	1.837479
С	-1.319306	-2.143562	2.455782
Н	-1.856451	-2.497308	1.57001
Н	-0.952282	-3.010434	3.006303
Н	-2.048828	-1.619263	3.081123
С	3.116795	1.784041	0.394912
Н	2.164651	2.14633	0.793387
Н	3.829564	1.762018	1.222646
Н	3.46993	2.510406	-0.337269
α-Terpi	nene (5)		
State: S ₀)		
Absolute	e Gibbs Free energ	gy at 278 K: -390.	392301 a.u.
	· · · · ·		
С	0.864082	-0.89338	0.282909
С	2.070394	-0.6142	-0.230391
C	2.629621	0.741584	-0.174658
Н	2.659856	-1.384276	-0.715089
Н	3.48899	0.971894	-0.796928
С	2.131431	1.668488	0.652781
C	2.704911	3.043808	0.806843
Н	3.002146	3.219329	1.846608
Н	3.57775	3.188852	0.168843
Н	1.9613	3 80729	0 557656

С

0.192713

-2.244937

0.225329

Н	-0.086726	-2.50424	1.255913
С	1.083252	-3.358454	-0.317597
Н	2.008933	-3.447312	0.254838
Н	0.55933	-4.315566	-0.270445
Н	1.343284	-3.172986	-1.363694
С	-1.105028	-2.156181	-0.593397
Н	-1.622474	-3.118438	-0.597631
Н	-1.790565	-1.40739	-0.191567
Н	-0.874768	-1.885499	-1.627792
С	0.072322	0.246	0.89013
Н	-0.654069	-0.137805	1.61262
Н	-0.505583	0.730358	0.090037
С	0.980187	1.280485	1.551721
Н	0.402524	2.164938	1.834441
Н	1.399007	0.868509	2.481659

α-Terpinene (5)

State: T₁

Absolute Gibbs Free energy at 278 K: -390.313700 a.u.

С	0.760601	-0.838748	0.25536
С	1.963327	-0.484622	-0.498041
С	2.588238	0.699496	-0.288378
Η	2.355314	-1.174545	-1.236621
Η	3.46275	0.959764	-0.876517
С	2.131947	1.645579	0.703664
С	2.793299	2.968108	0.888383
Н	3.17579	3.086563	1.910464
Η	3.628838	3.102995	0.199491
Η	2.084309	3.791305	0.729429
С	0.155928	-2.211321	0.243871
Н	-0.204334	-2.412631	1.263108
С	1.14354	-3.316286	-0.134334
Н	2.051232	-3.263855	0.470771
Η	0.686798	-4.297419	0.013338
Н	1.431353	-3.24479	-1.18665
С	-1.074327	-2.254755	-0.683991
Η	-1.545791	-3.241055	-0.656851
Н	-1.819019	-1.51163	-0.390524
Η	-0.774028	-2.045869	-1.714866
С	0.016682	0.284691	0.897161
Η	-0.707574	-0.100165	1.622047
Н	-0.559961	0.836698	0.139549
С	0.975633	1.287144	1.578465
Н	0.433688	2.193657	1.873269
Н	1.33859	0.832563	2.511541

a-Zir	ngiberene (6)			C C	-5.486889	3.503356	-0.416153
Abso	. So luta Cibbs Eraa a	normy at 278 K · 5	85 572005 0 11	C C	-4.041007	4.732300	-0.039084
AUSU	iule Gibbs Fiee e	nergy at 276 K30	65.572095 a.u.	C	-5.155555	5 159604	1.231167
C	6 5 4 6 1 0	2 02/72/	0 207550	C C	-0.04024	2 727280	1.021201
C	-0.34019	5.054754 2.662757	0.397339		-7.008117	5.121209	1.43789
C	-3.343343	3.003737	-0.4/92/1	п	-4.140079	2.087027	-0.727263
C	-4.928378	4.795085	-0.123878	н	-5.159959	2.98/93/	-1.306477
C	-5.225559	5.461015	1.20176	H	-4.561235	4.961008	2.060486
C	-6.695419	5.219246	1.56115	Н	-6.850888	5.490356	2.6405
C	-/.089/19	3.775998	1.369545	H	-7.254212	5./86344	0.950829
H	-4.186111	5.238864	-0.780136	Н	-7.604429	3.218125	2.205379
H	-5.307559	3.177923	-1.421552	C	-7.1811	1.684527	-0.043954
Н	-4.609551	4.961125	1.969564	Н	-8.24591	1.835448	-0.249318
Н	-6.885398	5.52176	2.592215	Н	-6.720018	1.217297	-0.914826
Н	-7.331857	5.852825	0.922159	Н	-7.116216	0.98648	0.797725
Н	-7.865319	3.358868	2.005101	С	-4.790723	6.91599	1.207377
С	-6.925873	1.607345	0.12529	Н	-5.227646	7.32996	0.287542
Н	-7.688513	1.260365	0.823365	С	-5.362071	7.680703	2.405069
Η	-7.313724	1.499524	-0.892178	Н	-4.995691	8.70893	2.42663
Н	-6.054894	0.951047	0.209224	Н	-6.452079	7.725043	2.384796
С	-4.827464	6.950748	1.190943	Н	-5.058381	7.199045	3.340816
Н	-5.252555	7.397593	0.2812	С	-3.265927	7.097466	1.150487
С	-5.38505	7.700963	2.403617	Н	-2.808565	6.32884	0.520316
Н	-4.995719	8.720164	2.4492	Н	-2.855462	6.942347	2.15649
Н	-6.473825	7.76905	2.380837	С	-2.819103	8.472673	0.632893
Н	-5.095517	7.191015	3.328832	Н	-3.287654	9.267255	1.218722
С	-3.299279	7.099641	1.14023	Н	-3.18219	8.595672	-0.392112
Н	-2.854034	6.323242	0.510225	С	-1.320376	8.624712	0.652337
Н	-2.895999	6.933378	2.147208	Н	-0.797139	8.360156	-0.26428
С	-2.822517	8.46657	0.627984	С	-0.585183	9.007622	1.698722
Н	-3.281799	9.267755	1.212464	C	-1.164752	9.371676	3.039931
Н	-3.176123	8.598555	-0.399223	Н	-0.914793	10.40623	3.296664
C	-1 321488	8 591467	0.658347	Н	-2.247747	9 258749	3 082294
н	-0 796918	8 323043	-0.256385	н	-0 728887	8 73952	3 820216
C	-0.586554	8 95/1991	1 711802	C II	0.91/1998	9.098205	1 618/66
C	-1 168/133	9 321888	3.051178	с н	1 281524	8 831665	0.626543
ч	0.800421	0.340420	3 316658	н	1.261324	10 113218	1 850748
п п	-0.899421	0.349429	3.085010	п П	1.255205	8 432541	2 350004
п п	-2.233707	9.230731	3.065019	11	1.382380	0.432341	2.330994
п	-0.751197	0.010226	3.03020	0 Sec	aninh allonduona	(7)	
U U	0.915494	9.019320	1.041/8	p-Ses	squipnenandrene	(7)	
H	1.283849	8.750732	0.651088	State	S_0	070 K 50	05 571446
H	1.270003	10.027175	1.880817	Abso	lute Gibbs Free ei	hergy at 278 K: -58	85.571446 a.u.
Н	1.36639	8.342308	2.3/4351	~			
				С	-6.702565	3.077769	0.203274
α-Zin	igiberene (6)			C	-5.511813	3.608362	-0.467904
State:	T_1	_		С	-4.779968	4.606716	0.038853
Abso	lute Gibbs Free en	nergy at 278 K: -58	85.492860 a.u.	С	-5.127255	5.351744	1.307289
				С	-6.602737	5.117408	1.651905
С	-6.515839	2.982114	0.298546	Н	-3.900595	4.93298	-0.508638

Н	-5.230165	3.15637	-1.414457	Н	-7.739802	1.213707	0.614
Н	-4.517759	4.943584	2.130206	Н	-6.797454	1.203997	-0.989381
Н	-6.825818	5.50134	2.649257	С	-4.836761	6.977833	1.187955
Н	-7.225639	5.670974	0.938472	Н	-5.271854	7.437059	0.289264
С	-7.486148	2.163021	-0.374	С	-5.388934	7.702578	2.418568
Н	-8.370366	1.7809	0.123511	Н	-4.985748	8.714676	2.491937
Н	-7.259421	1.771692	-1.359756	Н	-6.476334	7.787717	2.394166
С	-4.754703	6.847024	1.175439	Н	-5.109756	7.165571	3.331601
Н	-5.141454	7.19545	0.207539	С	-3.309766	7.136539	1.125305
С	-5.388005	7.694175	2.283037	Н	-2.871483	6.380155	0.466763
Н	-5.021688	8.722237	2.247293	Н	-2.894239	6.942197	2.122444
Н	-6.475314	7.732411	2.203281	С	-2.843906	8.519861	0.648421
Н	-5.133261	7.283622	3.266047	Н	-3.294811	9.302595	1.263568
С	-3.229402	7.033137	1.190203	Н	-3.213254	8.682107	-0.368896
Н	-2.729044	6.21358	0.665688	С	-1.342745	8.646736	0.659659
Н	-2.879282	6.979181	2.228866	Н	-0.831656	8.404414	-0.269868
С	-2.75781	8.356618	0.570072	С	-0.592422	8.982236	1.711572
Н	-3.271133	9.197409	1.043518	С	-1.154421	9.310528	3.069397
Н	-3.053242	8.374213	-0.483397	Н	-0.883536	10.330975	3.359196
С	-1.264771	8.531071	0.672441	Н	-2.238901	9.21565	3.117261
Н	-0.680246	8.197292	-0.182405	Н	-0.723865	8.64415	3.823734
С	-0.603305	9.012712	1.727229	С	0.908331	9.050833	1.620891
С	-1.273332	9.481909	2.99143	Н	1.262147	8.810283	0.617769
Н	-1.042078	10.535502	3.178586	Н	1.265179	10.05227	1.882368
Н	-2.356635	9.366199	2.969218	Н	1.370982	8.354585	2.327668
Н	-0.891296	8.918652	3.848951	С	-7.012606	3.713978	1.488199
С	0.897998	9.1179	1.736925	Н	-6.572116	3.232324	2.372131
Н	1.331768	8.769334	0.799044	Н	-8.093318	3.558444	1.567862
Н	1.210898	10.154524	1.898319				
Н	1.321937	8.527466	2.555451	5,5-d	imethyl-1-vinylb	icyclo[2,1,1]hexane	(9)
С	-6.954529	3.629623	1.583248	State:	\mathbf{S}_0	• - / / -	
Н	-6.319878	3.087046	2.295307	Abso	lute Gibbs Free er	nergy at 278 K: -390	.354231 a.u.
Н	-7.992256	3.45604	1.875583	Abso	lute total energy (S ₀): -390.556967	
				Abso	lute total energy (T ₁): -390.392173	
β-Ses	quiphellandrene	e (7)				-/	
State:	T_1			С	8.021728	1.876788	3.744137
Abso	lute Gibbs Free er	nergy at 278 K: -5	85.483436 a.u.	Н	8.979485	2.048095	4.241631
		2.		Н	7.205556	2.08363	4.429676
С	-6.501213	3.015859	0.252151	С	9.200679	0.562642	2.169903
С	-5.535171	3.587226	-0.501848	H	10.049797	0.347929	2.82255
С	-4.914032	4.852327	-0.151059	Н	9.207241	-0.168465	1.360451
С	-5.221728	5.484556	1.169072	С	9.176737	2.042733	1.68137

С

Η

Η

Η

Η

Н

С

-6.699351

-4.277707

-5.195732

-4.621592

-6.951506

-7.074532

-7.3247

5.211384

5.352996

3.08042

4.98238

5.619337

5.723228

1.713476

1.502994

-0.869092

-1.400762

1.951804

2.483381

0.761296

-0.076563

Η

Н

С

Η

С

С

С

10.019669

9.172761

7.853193

7.532427

7.874702

6.886656

7.558081

2.620293

2.134244

2.482052

3.513558

0.536131

1.296131

-0.737666

2.064931

0.594546

2.328254

2.179428

2.967512

2.007059

3.663146

Η	8.175387	-0.959336	4.533609
С	6.625326	-1.610311	3.293514
Н	5.995428	-1.434291	2.428516
Н	6.465889	-2.532402	3.839647
С	6.757993	0.849868	0.551766
Н	6.132658	-0.04386	0.477145
Н	6.269482	1.637632	-0.030629
Н	7.709745	0.626431	0.072575
С	5.473411	1.501381	2.557804
Н	4.876168	0.595253	2.433247
Н	5.440193	1.766105	3.613051
Н	4.978524	2.299402	1.995919

Myrcene epoxide (10)

State: S₀

Absolute Gibbs Free energy at 278 K: -465.564660 a.u.

С	2.508862	3.151441	-1.840222
Н	1.552888	3.398402	-1.392763
Н	2.852542	3.793331	-2.641823
С	3.239705	2.112309	-1.434485
Н	4.191399	1.917227	-1.922612
С	2.882034	1.172358	-0.359074
С	3.723006	0.176877	-0.057899
Н	3.519085	-0.557619	0.711062
Н	4.655355	0.07102	-0.602319
С	1.570356	1.404169	0.351353
Н	1.590782	2.408128	0.789712
Н	0.769976	1.427953	-0.398969
С	1.204949	0.391754	1.435418
Н	0.303871	0.746841	1.946312
Н	1.996468	0.336504	2.187344
С	0.946554	-0.999815	0.892046
Н	0.694355	-1.038167	-0.167992
С	0.471937	-2.118746	1.725669
С	0.253215	-1.931746	3.206619
Н	0.90084	-1.154246	3.609767
Н	-0.787337	-1.662036	3.405227
Н	0.467636	-2.864991	3.733463
С	-0.324456	-3.23157	1.091017
Н	-1.396149	-3.05074	1.20368
Н	-0.088428	-3.311897	0.029381
Н	-0.08629	-4.18429	1.571251
0	1.829105	-2.047819	1.293118

Myrcene epoxide (10)

State: T₁

Absolute Gibbs Free energy at 278 K: -465.483303 a.u.

С	1.760759	0.383224	-1.760754
Н	0.905056	1.020641	-1.580006
Н	1.785263	-0.150689	-2.701191
С	2.786041	0.245462	-0.853096
Н	3.599162	-0.426843	-1.11864
С	2.893059	0.869451	0.393001
С	4.029043	0.564043	1.273639
Н	3.969474	-0.216855	2.024055
Н	4.923244	1.177889	1.258593
С	1.869058	1.842786	0.917824
Н	2.391144	2.662157	1.421334
Н	1.300575	2.286998	0.096037
С	0.899687	1.191692	1.922817
Н	0.278812	1.96727	2.381907
Н	1.456957	0.714845	2.731554
С	-0.005438	0.195233	1.247862
Н	-0.63484	0.630521	0.469339
С	0.249395	-1.251258	1.129088
С	1.464785	-1.908768	1.732987
Н	1.837187	-1.35548	2.59414
Н	1.202362	-2.915938	2.067837
Н	2.259941	-1.989448	0.987423
С	-0.364098	-2.001312	-0.027079
Η	-0.657439	-3.005835	0.289524
Η	-1.250685	-1.482166	-0.394036
Н	0.357257	-2.089584	-0.842981
0	-0.697764	-0.737189	2.069615

M06-2X/6-31+G(d,p)

Dimers

Dimer 1a gas-phase

Absolute energy: -783.487522296 a.u. Absolute Gibbs Free energy at 278 K: -783.008465 a.u.

С	0.949348	3.449393	2.641819
С	2.48112	3.467336	2.94205
С	2.475912	5.009963	2.655526
С	0.923414	4.990612	2.7873
Η	0.76668	3.156103	1.598647
Η	0.622656	5.27516	3.805274
С	2.661781	3.109693	4.423028
Η	2.088041	3.814398	5.036226
С	2.798952	5.370754	1.201446
Η	2.31092	4.650283	0.53487
С	2.296011	6.782734	0.843576

Η	2.209417	6.850352	-0.249402	Dime	er 1a solvent pha	se (toluene)	
С	2.163153	1.682441	4.728672	Abso	lute energy: -783.	500802232 a.u.	
Н	1.972453	1.609633	5.80641				
С	0.106671	2.585554	3.583455	С	-0.642593	0.244253	-0.581413
Н	-0.858246	2.329908	3.127733	С	-0.771505	-1.237531	-0.106872
Н	-0.119135	3.147955	4.49963	С	0.731975	-1.180404	0.340586
С	0.884265	1.312352	3.940354	С	0.661966	0.373414	0.24314
Н	1.199436	0.865185	2.984228	Н	-0.424983	0.283425	-1.657717
С	0.018512	0.244766	4.638628	Н	0.449554	0.807598	1.229952
Η	-0.765122	-0.033918	3.918791	С	-1.768535	-1.259762	1.058898
С	-0.685028	0.755167	5.899413	Н	-1.419462	-0.578479	1.843502
Н	-1.362341	1.585595	5.680335	С	1.717705	-1.653848	-0.733498
Н	-1.2775	-0.045832	6.353099	Н	1.384095	-1.290015	-1.712231
Н	0.03441	1.095565	6.652564	С	3.139285	-1.118703	-0.473015
С	0.831976	-1.014246	4.949505	Н	3.700809	-1.161694	-1.416227
Н	0.183476	-1.81916	5.30937	С	-3.174972	-0.80851	0.614293
Н	1.359976	-1.375932	4.060237	Н	-3.731774	-0.495994	1.506341
Н	1.578532	-0.818849	5.727436	С	-1.83726	1.143931	-0.253661
С	3.406851	2.613328	2.079872	Н	-1.85039	2.032506	-0.897658
Н	3.202404	2.733367	1.012538	Н	-1.754554	1.506568	0.779931
Н	4.454069	2.890769	2.256044	С	-3.137543	0.346073	-0.415475
Н	3.305272	1.548987	2.314606	Н	-3.100398	-0.104835	-1.419627
С	0.155123	5.835774	1.766939	С	-4.401995	1.229011	-0.397322
Н	-0.850181	6.047688	2.141903	Н	-4.318215	1.904056	-1.261613
Н	0.02864	5.277686	0.82719	С	-4.520041	2.105717	0.85211
С	3.278506	5.891379	3.608018	Н	-3.680598	2.801467	0.944749
Н	4.348063	5.655692	3.536681	Н	-5.43862	2.701049	0.812414
Н	3.158247	6.952558	3.367365	Н	-4.561684	1.503664	1.767071
Н	2.972978	5.756274	4.649072	С	-5.668796	0.391071	-0.584726
С	0.924588	7.13208	1.475645	Н	-6.545262	1.03321	-0.721524
Н	1.101077	7.624589	2.447208	Н	-5.589834	-0.261829	-1.461588
С	0.147262	8.138182	0.606334	Н	-5.858332	-0.242218	0.289588
Н	-0.037983	7.657091	-0.367142	С	-1.141915	-2.303405	-1.134061
С	0.971547	9.407264	0.36512	Н	-0.542352	-2.225304	-2.045515
Н	1.91354	9.199806	-0.149118	Н	-0.990145	-3.307587	-0.716844
Н	0.411368	10.125371	-0.241687	Н	-2.193841	-2.228659	-1.42946
Н	1.20853	9.891344	1.32107	С	1.88429	1.060642	-0.373414
С	-1.203826	8.52072	1.217958	Н	1.906421	2.113801	-0.078576
Н	-1.898794	7.678733	1.259281	Н	1.818076	1.042282	-1.471532
Н	-1.068067	8.899419	2.238812	С	1.076912	-1.809089	1.686984
Н	-1.6808	9.312036	0.631092	Н	0.90591	-2.893313	1.661723
Н	3.039078	7.533111	1.134858	Н	2.129407	-1.649821	1.944593
Н	3.875896	5.290835	1.006666	Н	0.47736	-1.393825	2.502076
Н	3.710615	3.219909	4.726351	С	3.167271	0.336579	0.05946
Н	2.950037	0.950968	4.512922	Н	3.16125	0.30661	1.162271
				С	4.463115	1.060183	-0.35439
				Н	4.483939	1.094164	-1.45512
				С	5.698393	0.291116	0.124377
				Н	5.748554	-0.71887	-0.291871

Н	6.617337	0.813165	-0.161984
Η	5.692406	0.204229	1.21869
С	4.526528	2.496626	0.171826
Η	3.766631	3.142261	-0.275837
Η	4.387869	2.514669	1.260506
Η	5.502893	2.942955	-0.044678
Η	3.667839	-1.777661	0.22451
Η	1.73185	-2.749323	-0.798937
Η	-1.815972	-2.257399	1.513893
Η	-3.72949	-1.655041	0.193779

Dimer 1c gas-phase

Absolute energy: -783.50809546 a.u. Absolute Gibbs Free energy at 278 K: -783.025727 a.u.

С	-1.797698	1.806779	-0.752856
С	-0.503511	1.025554	-1.068033
С	-1.618605	-0.007677	1.00429
С	-2.27926	1.340716	0.646154
Н	-2.543576	1.509474	-1.502503
Η	-2.025841	2.099783	1.395322
Н	-3.371158	1.254205	0.663986
С	0.431807	1.14429	0.158379
Н	0.295864	2.171137	0.522329
С	-0.097454	0.21371	1.291489
Н	-2.08039	-0.431526	1.905626
Н	-0.013624	1.45422	-1.952722
С	-1.812366	-0.967814	-0.193761
Н	-1.456655	-1.962746	0.100421
С	-0.928463	-0.425735	-1.357434
Н	-0.050111	-1.061223	-1.515478
Н	-1.491132	-0.436188	-2.298418
С	0.666018	-1.129915	1.34773
Н	0.380676	-1.654668	2.269538
Н	0.375584	-1.783892	0.522851
С	2.186111	-0.998075	1.253386
Н	2.622511	-1.997375	1.343775
Н	2.594579	-0.399611	2.080741
С	2.582377	-0.347425	-0.075948
Н	2.177197	-0.967963	-0.893818
С	1.943665	1.045914	-0.1308
Н	2.477706	1.661025	0.610572
Н	2.125558	1.518757	-1.102074
С	4.111048	-0.27972	-0.272973
Н	4.52272	0.311461	0.560371
С	4.755322	-1.669768	-0.235304
Н	5.826667	-1.602197	-0.448218
Н	4.644592	-2.157863	0.735664

Η	4.305411	-2.320473	-0.995669
С	4.492042	0.416433	-1.584259
Η	4.000719	-0.073942	-2.434295
Н	4.211167	1.47206	-1.594862
Η	5.572702	0.361984	-1.748246
С	-1.660449	3.324856	-0.843734
Η	-1.367739	3.635493	-1.852116
Η	-2.612715	3.810287	-0.604446
Η	-0.91326	3.709897	-0.141409
С	-3.285994	-1.20079	-0.595166
Η	-3.689701	-0.283916	-1.046691
С	-4.154247	-1.56836	0.612026
Н	-4.239394	-0.750914	1.332854
Η	-5.165775	-1.837293	0.29149
Η	-3.7295	-2.434672	1.135007
С	-3.381168	-2.323258	-1.634476
Н	-4.414412	-2.458525	-1.9692
Η	-2.766934	-2.12899	-2.518022
Н	-3.045333	-3.271157	-1.196272
С	0.087951	0.9022	2.652801
Η	-0.460208	1.846718	2.71121
Н	-0.261927	0.256431	3.466361
Н	1.142968	1.13071	2.837269

Dimer 1c solvent phase (toluene)

e energy: -783.520)/43914 a.u.	
-1.797846	1.806613	-0.753557
-0.503122	1.025345	-1.068065
-1.618858	-0.007326	1.004759
-2.278708	1.341331	0.645883
-2.54376	1.507757	-1.502325
-2.023611	2.100532	1.394482
-3.370714	1.254598	0.663991
0.432232	1.144471	0.158824
0.295499	2.171044	0.523078
-0.097242	0.213753	1.292202
-2.081656	-0.429984	1.906089
-0.012517	1.453746	-1.952415
-1.812942	-0.968007	-0.193223
-1.457001	-1.962974	0.100208
-0.928493	-0.426165	-1.356557
-0.049796	-1.061993	-1.511985
-1.490505	-0.437653	-2.298009
0.666778	-1.12968	1.348758
0.382203	-1.654055	2.271239
0.376303	-1.783675	0.523839
2.187021	-0.997807	1.254585
2.623313	-1.997452	1.344671
	e energy: -/83.520 -1.797846 -0.503122 -1.618858 -2.278708 -2.54376 -2.023611 -3.370714 0.432232 0.295499 -0.097242 -2.081656 -0.012517 -1.812942 -1.457001 -0.928493 -0.049796 -1.490505 0.666778 0.382203 0.376303 2.187021 2.623313	e energy: -783.520743914 a.u. -1.797846 1.806613 -0.503122 1.025345 -1.618858 -0.007326 -2.278708 1.341331 -2.54376 1.507757 -2.023611 2.100532 -3.370714 1.254598 0.432232 1.144471 0.295499 2.171044 -0.097242 0.213753 -2.081656 -0.429984 -0.012517 1.453746 -1.812942 -0.968007 -1.457001 -1.962974 -0.928493 -0.426165 -0.049796 -1.061993 -1.490505 -0.437653 0.666778 -1.12968 0.382203 -1.654055 0.376303 -1.783675 2.187021 -0.997807 2.623313 -1.997452

Н	2.594811	-0.399145	2.082232	С	-3.47685	0.256882	0.141965
С	2.583318	-0.347334	-0.074933	Н	-3.270706	-0.791324	0.402692
Н	2.177084	-0.967732	-0.892074	Н	-3.744366	0.264116	-0.924237
С	1.944563	1.046154	-0.12967	С	-4.651282	0.763335	0.983602
Н	2.477965	1.66127	0.612135	Н	-4.273437	1.012244	1.985341
Н	2.126907	1.518881	-1.10107	Н	-5.028742	1.704401	0.564961
С	4.11244	-0.280564	-0.27318	С	-5.912798	-1.751735	-0.906365
Н	4.525879	0.308554	0.560637	Н	-4.997207	-1.403591	-1.391942
С	4.755181	-1.670892	-0.239292	Н	-5.651284	-2.600184	-0.265343
Н	5.827623	-1.60404	-0.449991	Н	-6.582033	-2.118627	-1.69185
Н	4.643985	-2.163074	0.730132	С	-6.93585	0.552195	-0.996087
Н	4.307255	-2.320637	-1.002213	Н	-6.032747	0.973234	-1.452989
С	4.493226	0.417007	-1.583245	Н	-7.605559	0.250269	-1.807498
Н	4.002029	-0.070146	-2.435698	Н	-7.428308	1.350292	-0.429796
Н	4.214877	1.473827	-1.592962	С	3.311232	-0.177952	0.180051
Н	5.574346	0.362368	-1.748101	Н	3.103446	0.899883	0.250699
С	-1.661737	3.324215	-0.845181	Н	3.584105	-0.370379	-0.868474
Н	-1.373159	3.636076	-1.855038	С	4.489698	-0.514713	1.095217
Н	-2.614072	3.810138	-0.604169	Н	4.816843	-1.546551	0.919812
Н	-0.912893	3.71236	-0.145798	Н	4.150635	-0.476852	2.13936
С	-3.28723	-1.200519	-0.594509	С	7.45319	1.477092	-0.508988
Н	-3.69087	-0.282682	-1.043844	Н	8.264492	1.081058	0.11378
С	-4.155074	-1.570579	0.61162	Н	7.842732	1.606014	-1.523769
Н	-4.242428	-0.754761	1.334638	Н	7.184548	2.464807	-0.120353
Н	-5.167451	-1.838421	0.290631	С	6.650407	-0.845116	-1.036897
Н	-3.732751	-2.438619	1.134435	Н	5.788153	-1.511316	-1.141416
С	-3.383234	-2.320737	-1.635356	Н	7.120533	-0.752128	-2.021049
Н	-4.416728	-2.454368	-1.971909	Н	7.370207	-1.330245	-0.365598
Н	-2.769531	-2.12586	-2.519773	С	-2.381174	2.540933	-0.071479
Н	-3.04912	-3.271421	-1.200875	Н	-2.738797	2.618717	-1.106074
С	0.087717	0.902477	2.652846	Н	-3.106772	3.043457	0.574289
Н	-0.46141	1.84688	2.712942	Н	-1.436128	3.089314	-0.0006
Н	-0.260582	0.257247	3.468165	С	6.254135	0.527556	-0.490082
Н	1.142532	1.132878	2.838458	Н	5.480608	0.949151	-1.147194
				С	5.680739	0.434047	0.930719
Dime	er 2a (cis) gas-ph	ase		Н	6.487629	0.118784	1.608011
Abso	lute energy: -785.	.87605671 a.u.		Н	5.381778	1.441264	1.253032
Abso	lute Gibbs Free er	nergy at 278 K: -7	85.365462 a.u.	С	2.21453	-2.464444	0.3645
				Н	2.582009	-2.718743	-0.637898
С	0.890431	-0.480346	-0.406606	Н	2.931173	-2.851322	1.094253
С	-0.55004	-0.957462	-0.105301	Н	1.266662	-2.990584	0.517942
С	-1.05526	0.453875	-0.48821	С	2.025534	-0.951536	0.49253
С	0.385028	0.975972	-0.273383	Н	1.73551	-0.724211	1.53179
Н	1.142181	-0.694628	-1.45533	С	-6.595654	-0.640945	-0.100814
Η	-0.940561	-1.817803	-0.655709	Н	-7.545109	-1.059872	0.260705
Η	-0.680556	-1.134431	0.971702	С	-5.817224	-0.217327	1.161352
Н	-1.30635	0.483665	-1.558344	Н	-6.531786	0.249711	1.851698
Н	0.515119	1.336246	0.756929	Н	-5.450091	-1.121044	1.667388
Н	0.775364	1.728518	-0.96395	С	-2.190714	1.073022	0.315346

Н	-1.901652	1.028694	1.378601	Н	-5.494645	-0.939256	-1.16189
				С	-5.689971	-0.442616	0.921887
				Н	-6.495879	-0.131442	1.602475
				Н	-5.394117	-1.454152	1.2337
Dime	er 2a (cis) solvent	t phase (toluene)		С	-2.219637	2.454589	0.375684
Abso	lute energy: -785	.891911618 a.u.		Н	-2.588684	2.713549	-0.62533
С	-0.89198	0.473745	-0.398289	Н	-2.93465	2.84135	1.107804
С	0.547388	0.954064	-0.095857	Н	-1.272375	2.982738	0.529876
С	1.056848	-0.455126	-0.48198	С	-2.029491	0.941951	0.500809
С	-0.382052	-0.981384	-0.266167	Н	-1.740642	0.713115	1.539858
Н	-1.143603	0.688458	-1.446825	С	6.602948	0.646363	-0.107013
Н	0.935245	1.816706	-0.645075	Н	7.549895	1.071162	0.254081
Н	0.677376	1.129131	0.981429	С	5.824456	0.224269	1.155781
Н	1.306449	-0.482323	-1.552401	Н	6.540047	-0.241176	1.846432
Н	-0.510296	-1.342685	0.76392	Н	5.457224	1.1289	1.660365
Н	-0.770609	-1.734443	-0.957616	С	2.196054	-1.072741	0.319034
С	3.480827	-0.253619	0.143993	Н	1.908882	-1.031057	1.382711
Н	3.273222	0.793696	0.407373				
Н	3.746507	-0.258702	-0.922515				
С	4.658785	-0.757735	0.982297	Dime	er 2a (trans) gas-	phase	
Н	4.284903	-1.004965	1.986074	Abso	lute energy: -785.	.87348024 a.u.	
Н	5.035886	-1.699036	0.563704	Abso	lute Gibbs Free er	nergy at 278 K: -7	85.362101 a.u.
С	5.917031	1.749472	-0.9196				
Н	5.009713	1.393324	-1.415665	С	0.993785	-1.664094	-0.624285
Н	5.641255	2.597665	-0.283368	С	-0.087483	-0.559723	-0.769799
Н	6.590567	2.123073	-1.69906	С	-1.068364	-1.439422	0.040098
С	6.949396	-0.548169	-0.997144	С	-0.137486	-2.646818	-0.219705
Н	6.049472	-0.976779	-1.453981	Н	1.52187	-1.922268	-1.551537
Н	7.618485	-0.246186	-1.809902	Н	0.147341	0.432561	-0.372497
Н	7.447615	-1.342057	-0.429115	Н	-0.421683	-0.449258	-1.808038
С	-3.314952	0.168326	0.184457	Н	-1.046316	-1.161253	1.103213
Η	-3.106804	-0.909548	0.253835	Н	-0.488659	-3.241074	-1.071305
Η	-3.586213	0.363075	-0.86396	Н	0.059493	-3.321855	0.619029
С	-4.496318	0.501211	1.097487	С	-3.202411	-0.161608	-0.303339
Н	-4.820482	1.535152	0.928653	Н	-2.608171	0.584002	-0.851178
Н	-4.161686	0.453553	2.142818	Н	-3.18068	0.140555	0.753326
С	-7.469518	-1.460944	-0.526665	С	-4.640791	-0.142319	-0.827694
Н	-8.280604	-1.066058	0.097812	Н	-4.670384	-0.708495	-1.769368
Н	-7.859234	-1.581085	-1.543062	Н	-5.295645	-0.683468	-0.133746
Н	-7.208307	-2.454363	-0.146002	С	-4.119898	2.937229	0.488047
С	-6.653467	0.859847	-1.033341	Н	-3.381599	2.262563	0.929695
Н	-5.787564	1.522372	-1.134955	Н	-3.657219	3.420549	-0.378843
Н	-7.125661	0.778902	-2.018239	Н	-4.338761	3.714272	1.228157
Н	-7.369602	1.345553	-0.357931	С	-6.032124	1.50719	1.300307
С	2.389851	-2.539228	-0.070123	Н	-5.343559	0.772262	1.73325
Н	2.748293	-2.617577	-1.104772	Н	-6.274743	2.232623	2.083201
Н	3.115521	-3.042795	0.57559	Н	-6.954208	0.982398	1.027282
Н	1.446609	-3.091869	0.00012	С	2.93253	-0.219105	0.094473
С	-6.264784	-0.519596	-0.499746	Н	2.309298	0.656312	-0.13249

Н	3.458398	-0.47084	-0.838749	С	-3.207124	-0.162147	-0.304064
С	3.945707	0.171192	1.172556	Н	-2.614966	0.584159	-0.853315
Н	4.687634	-0.626163	1.298101	Н	-3.186461	0.141167	0.752152
Н	3.424822	0.256016	2.135982	С	-4.645762	-0.145549	-0.828266
С	6.112093	2.906755	-0.601258	Н	-4.674338	-0.71075	-1.77071
Н	6.875948	3.029894	0.176077	Н	-5.299407	-0.688424	-0.134436
Н	6.606865	2.9955	-1.573606	С	-4.137005	2.934174	0.491695
Н	5.400738	3.733551	-0.505533	Н	-3.403149	2.263057	0.946889
С	6.424421	0.413079	-0.592587	Н	-3.664235	3.412061	-0.373407
Н	5.938655	-0.567823	-0.603863	Н	-4.361379	3.718015	1.22383
Н	6.998344	0.511049	-1.519544	С	-6.050475	1.505278	1.295691
Н	7.13385	0.426979	0.244431	Н	-5.364443	0.770355	1.733347
С	-3.26068	-2.614815	0.356926	Н	-6.296045	2.231847	2.077507
Н	-3.356297	-2.32897	1.412135	Н	-6.973268	0.981123	1.022026
Н	-4.266072	-2.785912	-0.038011	С	2.934147	-0.212594	0.095426
Н	-2.719776	-3.56583	0.314363	Н	2.310334	0.662826	-0.130069
С	5.414387	1.553572	-0.453709	Н	3.459367	-0.464544	-0.83803
Н	4.680169	1.463239	-1.266498	С	3.94911	0.17819	1.171808
С	4.662862	1.493338	0.883505	Н	4.687786	-0.621771	1.300632
Н	5.380338	1.696748	1.691599	Н	3.428356	0.270107	2.134836
Н	3.928935	2.310987	0.908117	С	6.136873	2.896791	-0.603185
С	2.872582	-2.663076	0.72093	Н	6.900453	3.018347	0.175246
Н	3.508875	-2.871045	-0.148864	Н	6.634601	2.982143	-1.574968
Н	3.52267	-2.550591	1.592779	Н	5.430968	3.729455	-0.511613
Н	2.242454	-3.54054	0.890726	С	6.434411	0.40277	-0.586971
С	2.034992	-1.405707	0.469348	Н	5.9441	-0.576268	-0.600069
Н	1.497663	-1.15033	1.398079	Н	7.013721	0.495077	-1.511876
С	-5.405301	2.203247	0.09054	Н	7.141217	0.412413	0.252827
Н	-6.111561	2.975364	-0.24509	С	-3.260043	-2.614741	0.357173
С	-5.231872	1.245468	-1.105722	Н	-3.35872	-2.330462	1.412894
Н	-6.221688	1.092393	-1.555334	Н	-4.26492	-2.790187	-0.038548
Н	-4.623112	1.746379	-1.87129	Н	-2.718611	-3.566158	0.316057
С	-2.516903	-1.527752	-0.421404	С	5.430339	1.548731	-0.455645
Н	-2.504494	-1.810267	-1.48753	Н	4.69984	1.460202	-1.271845
				С	4.672384	1.496332	0.878634
				Н	5.38761	1.699998	1.688876
Dime	er 2a (trans) solve	ent phase (toluen	e)	Н	3.941424	2.316911	0.896816
Abso	lute energy: -785.	889248281 a.u.		С	2.873672	-2.656304	0.723057
				Н	3.51403	-2.865048	-0.144048
С	0.99461	-1.659075	-0.622754	Н	3.520987	-2.546477	1.597915
С	-0.088348	-0.556289	-0.769569	Н	2.243816	-3.535087	0.890719
С	-1.068997	-1.436402	0.040475	С	2.036274	-1.399391	0.471117
С	-0.136108	-2.64265	-0.218193	Н	1.498891	-1.1442	1.39963
Н	1.523557	-1.917367	-1.549459	С	-5.419623	2.199833	0.087789
Η	0.145436	0.436728	-0.372969	Н	-6.124565	2.971423	-0.251653
Н	-0.421947	-0.447795	-1.808323	С	-5.240524	1.240745	-1.10674
Н	-1.047698	-1.157597	1.103279	Н	-6.229511	1.084057	-1.55739
Н	-0.485924	-3.237375	-1.070179	Н	-4.632365	1.743199	-1.87194
Н	0.061899	-3.31716	0.620968	С	-2.518048	-1.527243	-0.421544

Η	-2.505025	-1.810749	-1.487192	Н	5.909038
				Н	7.118722
				Н	7.56618
				С	-4.208906
Dime	er 2g gas-phase			Н	-4.242686
Abso	lute energy: -785.	907053508 a.u.		Н	-4.185468
Abso	lute Gibbs Free er	nergy at 278 K: -7	85.393889 a.u.	С	-5.473057
				Н	-5.570319
С	-0.639313	1.975001	0.147891	Н	-5.358462
С	0.485912	2.857325	-0.393757	С	-6.771595
С	1.849587	2.346318	0.067109	Н	-6.672231
С	2.067828	0.881647	-0.322937	С	-7.027124
С	0.914038	0.010832	0.192778	Н	-6.25204
С	-0.469261	0.50372	-0.259484	Н	-7.054021
Н	2.653763	2.965224	-0.349267	Н	-7.988989
Н	0.450242	2.85638	-1.492194	С	-7.955506
Н	0.339362	3.894894	-0.073805	Н	-7.794998
Н	-0.639295	2.028818	1.247448	Н	-8.884326
H	-1.606435	2.365088	-0.184458	Н	-8.096705
Н	2.062336	0.824132	-1.424714		
Н	1.064357	-1.019349	-0.141667	Dime	er 2g solvent pl
Н	0.946171	-0.004668	1.295815	Abso	lute energy: -78
Н	-0.494598	0.44789	-1.362429		25
Н	1.917814	2.432964	1.162453	С	-0.650506
С	-1.630962	-0.368167	0.272409	С	0.470158
H	-1.783577	-0.095639	1.329682	С	1.836552
С	-1.322559	-1.86864	0.210337	С	2.064219
H	-0.517222	-2.154312	0.89138	С	0.913766
Н	-2.201263	-2.460907	0.479515	С	-0.470552
Н	-1.0257	-2.15624	-0.806269	Н	2.636961
С	-2.935776	-0.075979	-0.48902	Н	0.435546
Н	-2.877332	-0.561335	-1.475006	Н	0.317606
Н	-3.026946	0.998813	-0.685582	Н	-0.651776
С	3.436278	0.39307	0.167614	Н	-1.620428
Н	4.188701	1.130444	-0.142445	Н	2.061195
Н	3.439462	0.391153	1.268962	Н	1.070655
С	3.84796	-0.986381	-0.347204	Н	0.942906
Н	3.090882	-1.727589	-0.066013	Н	-0.49082
Н	3.863082	-0.961658	-1.446573	Н	1.903843
С	5.209703	-1.481734	0.154297	С	-1.631673
Н	5.373627	-2.483125	-0.263183	Н	-1.794145
Н	5.172923	-1.610866	1.245775	С	-1.317102
С	6.409598	-0.581701	-0.206724	Н	-0.522969
Н	6.136818	0.009826	-1.093805	Н	-2.199529
С	7.635692	-1.425708	-0.564079	Н	-1.003102
Н	8.49905	-0.795339	-0.80091	C	-2.933432
Н	7.912156	-2.069061	0.280166	Ĥ	-2.887533
Н	7.437576	-2.070775	-1.425889	Н	-3.005295
С	6.765853	0.384764	0.927725	С	3.435177
-				-	

H	5.909038	0.983977	1.246498
Η	7.118722	-0.179234	1.799662
Η	7.56618	1.068723	0.626686
С	-4.208906	-0.530826	0.226899
Η	-4.242686	-0.0573	1.216553
Η	-4.185468	-1.614955	0.401064
С	-5.473057	-0.184642	-0.56051
Η	-5.570319	0.909701	-0.629574
Η	-5.358462	-0.547796	-1.591512
С	-6.771595	-0.758802	0.018248
Η	-6.672231	-1.854226	0.041109
С	-7.027124	-0.273052	1.446571
Н	-6.25204	-0.610205	2.1404
Η	-7.054021	0.82355	1.476452
Η	-7.988989	-0.641068	1.817746
С	-7.955506	-0.405455	-0.883438
Η	-7.794998	-0.756101	-1.908055
Η	-8.884326	-0.850938	-0.513425
Η	-8.096705	0.681582	-0.918951

ase (toluene)

5.923269971 a.u.

С	-0.650506	1.955789	0.117483
С	0.470158	2.836392	-0.435999
С	1.836552	2.34048	0.033674
С	2.064219	0.870024	-0.329823
С	0.913766	0.00173	0.198778
С	-0.470552	0.479541	-0.266861
Н	2.636961	2.956712	-0.394287
Н	0.435546	2.81993	-1.53447
Н	0.317606	3.877752	-0.130415
Н	-0.651776	2.026581	1.216113
Н	-1.620428	2.333844	-0.221758
Н	2.061195	0.793039	-1.430268
Н	1.070655	-1.03358	-0.116727
Н	0.942906	0.006349	1.301894
Н	-0.49082	0.406838	-1.368804
Н	1.903843	2.44761	1.127312
С	-1.631673	-0.388394	0.272918
Н	-1.794145	-0.095758	1.323199
С	-1.317102	-1.888165	0.243496
Н	-0.522969	-2.161028	0.943593
Н	-2.199529	-2.47826	0.508805
Н	-1.003102	-2.196109	-0.762112
С	-2.933432	-0.120897	-0.504669
Н	-2.887533	-0.673408	-1.455364
Н	-3.005295	0.939877	-0.773394
С	3.435177	0.398224	0.171792

Н	4.184248	1.132221	-0.154027	Н	2.487977	2.122354	0.945842
Н	3.437887	0.419647	1.272901	Н	0.81838	1.081302	2.229553
С	3.85374	-0.990288	-0.312612	Н	-1.804747	2.948733	-1.204832
Н	3.103923	-1.729852	-0.007982	Н	-2.081151	-0.638503	1.065408
Н	3.861839	-0.992274	-1.412444	Н	1.946397	-0.177409	1.824125
С	5.222363	-1.464713	0.19098	Н	0.017405	-1.29853	1.474408
Н	5.387524	-2.476208	-0.201375	Н	0.234033	-0.723796	-0.159544
Н	5.195171	-1.564679	1.285932	С	-0.195985	2.904854	0.236839
С	6.415521	-0.569623	-0.204439	Н	-0.102347	2.706619	1.309929
Н	6.13116	0.000375	-1.101713	Н	-0.086161	3.989501	0.131699
С	7.640316	-1.417636	-0.554729	С	0.928847	2.179699	-0.525105
Н	8.500433	-0.790614	-0.813892	Н	0.498267	1.483268	-1.25647
Н	7.928133	-2.043236	0.29954	Н	1.511735	2.896202	-1.115211
Н	7.437221	-2.08142	-1.401718	С	2.883641	0.60588	-0.514026
С	6.781085	0.423979	0.902481	Н	3.163122	1.228477	-1.375443
Н	5.925407	1.026145	1.220442	Н	2.370414	-0.273136	-0.932606
Н	7.150924	-0.115832	1.783148	С	-3.404583	0.799357	-0.503357
Н	7.572081	1.10751	0.574881	Н	-3.787117	1.5803	-1.175179
С	-4.209892	-0.504503	0.246378	Н	-3.917484	0.950981	0.456865
Н	-4.248259	0.066995	1.182685	С	4.164627	0.157875	0.190644
Н	-4.182189	-1.565633	0.529575	Н	3.915913	-0.448382	1.069372
С	-5.472555	-0.243566	-0.575522	Н	4.697413	1.044151	0.565301
Н	-5.564487	0.83657	-0.767532	С	5.090235	-0.635532	-0.732037
Н	-5.35989	-0.722215	-1.558514	Н	4.599157	-1.579571	-1.013875
С	-6.775135	-0.741848	0.062934	Н	5.229059	-0.072029	-1.665446
Н	-6.682702	-1.828108	0.209889	С	6.469881	-0.954684	-0.144131
С	-7.030576	-0.096276	1.426061	Н	6.96072	0.000245	0.095667
Н	-6.263084	-0.361783	2.159078	С	7.328837	-1.687249	-1.176186
Н	-7.046467	0.997526	1.335237	Н	8.335861	-1.878448	-0.792154
Н	-7.997937	-0.41103	1.832046	Н	6.87818	-2.654415	-1.429863
С	-7.955703	-0.485678	-0.874516	Н	7.421897	-1.108317	-2.100709
Н	-7.797334	-0.950348	-1.853687	С	6.369604	-1.775729	1.143271
Н	-8.888041	-0.882759	-0.459329	Н	5.859461	-1.228849	1.941119
Н	-8.093306	0.591183	-1.033285	Н	5.813841	-2.704086	0.96035
				Н	7.364128	-2.048621	1.510425
				С	-3.775721	-0.560779	-1.101414
Dime	er 2k gas-phase			Н	-3.294902	-1.371381	-0.535649
Abso	lute energy: -785.	891386784 a.u.		Н	-3.346809	-0.608244	-2.109846
Abso	lute Gibbs Free er	nergy at 278 K: -7	85.374863 a.u.	С	-5.290593	-0.822445	-1.168469
				Н	-5.536494	-1.329891	-2.109202
С	-1.605386	2.513473	-0.216104	Н	-5.826814	0.138649	-1.192923
С	-1.895408	1.004924	-0.29643	С	-5.853031	-1.671256	-0.019753
С	1.900225	1.393075	0.366047	Н	-5.351726	-2.649892	-0.060172
С	-1.396896	0.206758	0.925919	С	-5.579779	-1.059927	1.355497
С	1.188218	0.482972	1.388199	Н	-4.508068	-0.966369	1.557341
С	0.028828	-0.387102	0.866545	Н	-6.02545	-0.059862	1.426936
Н	-2.33458	2.966895	0.470735	Н	-6.014591	-1.678019	2.147684
Н	-1.393855	0.596735	-1.186799	С	-7.353408	-1.896467	-0.212187
Н	-1.504625	0.821419	1.832263	Н	-7.566925	-2.353745	-1.183741

Н	-7.760791	-2.548443	0.567032	Н	5.845853	-2.66071	1.015138
Η	-7.891642	-0.942076	-0.16496	Н	7.404284	-1.989437	1.521482
				С	-3.787079	-0.561412	-1.091448
				Н	-3.312878	-1.373131	-0.521772
Dime	r 2k solvent pha	se (toluene)		Н	-3.356713	-0.613645	-2.099207
Absol	lute energy: -785.	907789713 a.u.		С	-5.303507	-0.814386	-1.162939
				Н	-5.548605	-1.319488	-2.105323
С	-1.602648	2.507774	-0.217187	Н	-5.834563	0.149607	-1.187803
С	-1.897527	0.9998	-0.295347	С	-5.87557	-1.662169	-0.017917
С	1.904167	1.382043	0.359403	Н	-5.379172	-2.643229	-0.05695
С	-1.395237	0.201162	0.925406	С	-5.606247	-1.05401	1.35891
С	1.193284	0.469591	1.3808	Н	-4.534921	-0.963592	1.566091
С	0.029232	-0.395437	0.861243	Н	-6.050402	-0.053265	1.433772
Н	-2.328924	2.964912	0.470535	Н	-6.044368	-1.673613	2.148961
Н	-1.400056	0.590029	-1.187009	С	-7.375743	-1.879238	-0.217095
Н	-1.498073	0.816073	1.832202	Н	-7.588632	-2.334578	-1.190321
Н	2.491007	2.111825	0.939339	Н	-7.790414	-2.531718	0.558649
Н	0.828636	1.065372	2.226407	Н	-7.911868	-0.923183	-0.170306
Н	-1.801101	2.942934	-1.206314				
Н	-2.080215	-0.643351	1.066413				
Н	1.951718	-0.195828	1.809216	Dime	er 3h gas-phase		
Н	0.016941	-1.307195	1.469035	Abso	lute energy: -785.	904851578 a.u.	
Н	0.230844	-0.731577	-0.165793	Abso	lute Gibbs Free en	nergy at 278 K: -7	85.387942 a.u.
С	-0.191498	2.894141	0.234199				
Н	-0.097688	2.692889	1.306788	С	0.092528	-0.323816	0.352162
Н	-0.078609	3.978903	0.130439	С	-1.18855	0.473699	-0.055884
С	0.930481	2.167454	-0.530346	С	-1.156036	1.948801	0.39703
Н	0.497083	1.469353	-1.258544	С	0.111934	2.644338	-0.099382
Н	1.511601	2.883353	-1.123226	С	1.382778	1.901402	0.2971
С	2.888824	0.595194	-0.520448	С	1.348086	0.442296	-0.168009
Н	3.157825	1.211452	-1.389816	Н	-1.190649	0.487453	-1.161078
Н	2.380172	-0.292841	-0.925499	Н	0.063886	2.711089	-1.197262
С	-3.40848	0.797957	-0.496142	Н	0.138269	3.675112	0.274952
Н	-3.790792	1.579247	-1.167906	Н	2.248858	2.405333	-0.144981
Н	-3.917129	0.951471	0.466161	Н	1.524759	1.945593	1.386114
С	4.17819	0.166168	0.181379	Н	1.24456	0.46662	-1.26695
Н	3.9392	-0.420598	1.076069	Н	-1.147807	1.963045	1.49811
Н	4.711549	1.062672	0.530118	С	-2.385254	2.734797	-0.066188
С	5.097958	-0.645465	-0.731519	Н	-3.317705	2.338679	0.346573
Н	4.608616	-1.598709	-0.98395	Н	-2.303855	3.782018	0.243117
Н	5.224475	-0.10442	-1.679966	Н	-2.463883	2.715488	-1.16025
С	6.486036	-0.94389	-0.151448	С	-2.491525	-0.221805	0.407345
Н	6.977756	0.018466	0.053886	Н	-2.905932	0.328033	1.261802
С	7.333586	-1.705112	-1.171407	Н	-2.279713	-1.229884	0.785275
Н	8.34765	-1.879497	-0.796428	Ċ	-3.541503	-0.358257	-0.698537
Н	6.885818	-2.682698	-1.389499	H	-3.750658	0.622667	-1.148184
Н	7.412676	-1.155574	-2.11563	H	-3.110682	-0.971259	-1.503604
С	6.404193	-1.726799	1.160211	Ċ	-4.866826	-0.986366	-0.252031
Н	5.906925	-1.156894	1.950705	H	-4.638617	-1.937805	0.251455

S61

С	-5.747061	-1.286945	-1.466653	Н	1.526008	1.951718	1.38065
Н	-6.689719	-1.756835	-1.168703	Н	1.246918	0.465374	-1.26864
Н	-5.989465	-0.359688	-1.999995	Н	-1.144181	1.97385	1.493405
Н	-5.24123	-1.955753	-2.170278	С	-2.380813	2.744302	-0.07177
С	-5.619911	-0.089153	0.733617	Н	-3.314557	2.351471	0.342059
Н	-5.050989	0.089966	1.650178	Н	-2.298693	3.792145	0.237528
Н	-5.833381	0.883373	0.272322	Н	-2.461438	2.726506	-1.165945
Н	-6.57597	-0.538996	1.019796	С	-2.492302	-0.212783	0.408167
С	0.146677	-0.476909	1.882861	Н	-2.906514	0.339389	1.261223
Н	-0.757949	-0.954341	2.270659	Н	-2.27932	-1.219917	0.787722
Н	0.994807	-1.088783	2.199402	С	-3.543759	-0.353418	-0.69616
Н	0.240478	0.492012	2.379698	Н	-3.760173	0.627047	-1.143452
С	0.027798	-1.712517	-0.365669	Н	-3.110651	-0.96343	-1.502258
Н	-0.993914	-1.890292	-0.718301	С	-4.864677	-0.991329	-0.248428
Н	0.635349	-1.652435	-1.278031	Н	-4.6289	-1.938703	0.259076
С	0.452667	-2.949186	0.431312	С	-5.741112	-1.304336	-1.462077
Н	0.393362	-3.839053	-0.202466	Н	-6.681481	-1.779623	-1.163286
Н	1.477903	-2.877247	0.806079	Н	-5.990424	-0.382765	-2.00289
Н	-0.201139	-3.114374	1.293298	Н	-5.231135	-1.975005	-2.161759
С	2.670759	-0.275227	0.13885	С	-5.627555	-0.097834	0.732247
Н	2.605988	-1.316386	-0.203112	Н	-5.058718	0.098828	1.64584
Н	2.822902	-0.31149	1.225177	Н	-5.861479	0.867427	0.265077
С	3.895817	0.363357	-0.524042	Н	-6.574931	-0.56124	1.027876
Н	3.638331	0.651109	-1.553972	С	0.147502	-0.469542	1.882045
Н	4.17162	1.291028	-0.003351	Н	-0.75791	-0.943223	2.273507
С	5.128438	-0.548265	-0.562541	Н	0.993888	-1.084094	2.199452
Н	4.860348	-1.449937	-1.133201	Н	0.24615	0.499428	2.378792
С	6.284157	0.147497	-1.282798	С	0.024265	-1.708061	-0.364147
Н	7.155468	-0.510045	-1.364048	Н	-0.997001	-1.88143	-0.720637
Н	5.996115	0.45634	-2.292886	Н	0.637114	-1.652983	-1.273365
Н	6.592396	1.044696	-0.732508	С	0.438471	-2.946231	0.434775
С	5.557884	-0.982586	0.840478	Н	0.377252	-3.835733	-0.200634
Н	5.764288	-0.103626	1.464184	Н	1.46272	-2.882633	0.814494
Н	4.786406	-1.575872	1.339938	Н	-0.220566	-3.111168	1.293337
Н	6.470026	-1.586497	0.800892	С	2.671415	-0.272909	0.141858
				Н	2.601756	-1.318151	-0.18631
Dime	er 3h solvent pha	se (toluene)		Н	2.826803	-0.295404	1.228138
Abso	lute energy: -785.	918646832 a.u.		С	3.897159	0.352387	-0.53303
				Н	3.639759	0.620958	-1.568152
С	0.092129	-0.318198	0.35179	Н	4.174217	1.288969	-0.029277
С	-1.188559	0.480949	-0.057181	С	5.129814	-0.560645	-0.556014
С	-1.153263	1.957345	0.392449	Н	4.862301	-1.471693	-1.111685
С	0.115673	2.649577	-0.106448	С	6.285844	0.122968	-1.286423
С	1.385301	1.905475	0.2915	Н	7.156837	-0.536908	-1.359455
С	1.349558	0.445077	-0.16976	Н	5.999108	0.417141	-2.301851
Н	-1.190737	0.492337	-1.162252	Н	6.597345	1.028358	-0.75078
Н	0.067359	2.71432	-1.204515	С	5.559616	-0.971422	0.853484
Н	0.144188	3.681051	0.266448	Н	5.762461	-0.083455	1.466146
Н	2.252182	2.407639	-0.151524	Н	4.79155	-1.56197	1.362297

Н	6.474648	-1.572662	0.824338	Н	-4.807767
				Н	-6.465496
Dime	er 3k gas-phase			Н	-5.908136
Abso	lute energy: -785.	890272275 a.u.		С	-6.300138
Abso	lute Gibbs Free er	nergy at 278 K: -7	85.373102 a.u.	Н	-6.030674
				Н	-6.622886
С	-1.561928	-1.965765	-0.695127	Н	-7.160077
2	-2.141569	-0.871592	0.252823	С	-5.140963
С	1.675283	-0.379392	-0.258691	Н	-4.82846
2	-1.10656	0.072078	0.879439	С	5.659553
2	1.445315	-0.27308	1.26882	Н	5.771543
2	0.008486	-0.63161	1.672958	Н	6.632166
Н	-2.337931	-2.102675	-1.461695	Н	4.954336
H	-2.649379	-1.39421	1.079924	С	6.177277
ł	-0.681876	0.696889	0.083239	Н	6.227348
ł	1.152978	0.466265	-0.728272	Н	5.912083
ł	1.621018	0.776027	1.54968	Н	7.180102
ł	-1.630315	0.766259	1.543542		
H	-0.105814	-0.41665	2.74198		
ł	-0.10349	-1.716488	1.586373	Dime	er 3k solvent pl
2	-0.306958	-1.58229	-1.513702	Abso	lute energy: -78
ł	-0.445212	-0.576997	-1.936439		25
ł	-0.309587	-2.261012	-2.37558	С	1.560968
2	1.103882	-1.671291	-0.885166	С	2.141579
ł	1.149757	-2.499969	-0.166656	С	-1.681121
ł	1.782995	-1.963262	-1.694817	С	1.104599
2	3.156568	-0.206875	-0.633153	С	-1.44685
ł	3.236883	-0.246897	-1.728848	С	-0.007846
ł	3.72996	-1.063796	-0.256182	Н	2.334634
2	-3.216913	-0.072596	-0.506525	Н	2.644572
H	-3.961546	-0.786902	-0.878417	Н	0.677797
H	-2.756462	0.381416	-1.398316	Н	-1.161445
7	3.776137	1.106702	-0.154433	Н	-1.624504
Ŧ	3.847856	1.120934	0.942776	Н	1.625818
Ŧ	3.102432	1.932472	-0.426687	Н	0.110866
7	5.168096	1.395996	-0.729461	Н	0.103121
Ŧ	5 083071	1 413772	-1 826123	C	0 302289
2	-3.92339	1.018499	0.299029	Н	0.43731
H	-3 215302	1 824771	0.52544	н	0.3035
Ŧ	-4 247371	0.608753	1 269278	C	-1 106614
C	2 410992	-1 146711	2 077224	н	-1 146451
Ŧ	2.342143	-2.196621	1 767168	н	-1 786638
Ŧ	3 453702	-0.835303	1.969112	C	-3 163964
Ŧ	2 160373	-1 102815	3 142022	ч	-3 245178
7	-1 423686	-3 348732	-0.043953	Н	-3 735419
Ŧ	-2.384047	-3,668958	0.372674	C	3,222266
H	-1.11855	-4.09138	-0.790068	н	3.962472
н	-0.690777	-3,380897	0.765989	Н	2.764358
C	-5 606082	2 885913	0 343648	C II	-3 786181
\sim	2.000002	2.000/10	0.575070	C	5.700101

Η	-4.807767	3.631958	0.409032
Η	-6.465496	3.34985	-0.150728
Η	-5.908136	2.627046	1.365875
С	-6.300138	0.643891	-0.5343
Η	-6.030674	-0.240428	-1.117797
Η	-6.622886	0.307958	0.458891
Н	-7.160077	1.112687	-1.023206
С	-5.140963	1.635042	-0.404713
Η	-4.82846	1.935782	-1.415897
С	5.659553	2.768012	-0.265455
Н	5.771543	2.784253	0.825465
Η	6.632166	3.011626	-0.704549
Η	4.954336	3.558539	-0.541692
С	6.177277	0.311566	-0.345323
Η	6.227348	0.209039	0.74634
Η	5.912083	-0.663458	-0.763356
Н	7.180102	0.565831	-0.703113

nase (toluene)

5.905034169 a.u.

-2.37558	С	1.560968	1.960384	-0.694979
-0.885166	С	2.141579	0.865156	0.252428
-0.166656	С	-1.681121	0.377687	-0.25475
-1.694817	С	1.104599	-0.080898	0.872425
-0.633153	С	-1.44685	0.265081	1.272079
-1.728848	С	-0.007846	0.621035	1.671479
-0.256182	Н	2.334634	2.0969	-1.46379
-0.506525	Н	2.644572	1.387482	1.082578
-0.878417	Н	0.677797	-0.69755	0.071105
-1.398316	Н	-1.161445	-0.466987	-0.728444
-0.154433	Н	-1.624504	-0.784307	1.550395
0.942776	Н	1.625818	-0.781469	1.531988
-0.426687	Н	0.110866	0.403411	2.739683
-0.729461	Н	0.103121	1.706168	1.585605
-1.826123	С	0.302289	1.5797	-1.509647
0.299029	Н	0.43731	0.574393	-1.933415
0.52544	Н	0.3035	2.25984	-2.370579
1.269278	С	-1.106614	1.670829	-0.876682
2.077224	Н	-1.146451	2.495728	-0.153329
1.767168	Н	-1.786638	1.968779	-1.683598
1.969112	С	-3.163964	0.210533	-0.627337
3.142022	Н	-3.245178	0.25771	-1.722732
-0.043953	Н	-3.735419	1.065793	-0.243492
0.372674	С	3.222266	0.070835	-0.505153
-0.790068	Η	3.962472	0.78943	-0.87777
0.765989	Н	2.764358	-0.387809	-1.395958
0.343648	С	-3.786181	-1.105029	-0.156659

Н	-3.8581	-1.12534	0.940397	Н	6.489104	-3.336659	-0.141145
Н	-3.114321	-1.930435	-0.434639	Н	5.944442	-2.596476	1.37187
С	-5.178713	-1.38981	-0.734092	С	6.304012	-0.636331	-0.558697
Н	-5.092899	-1.405385	-1.830633	Н	6.026961	0.235509	-1.158094
С	3.937015	-1.014091	0.301958	Н	6.631486	-0.278371	0.425678
Н	3.233397	-1.821711	0.537413	Н	7.165076	-1.108117	-1.044095
Н	4.266391	-0.597506	1.26744	С	5.152483	-1.632154	-0.405185
С	-2.40739	1.137743	2.086627	Н	4.833322	-1.948939	-1.409282
Н	-2.338746	2.18952	1.781823	С	-5.673695	-2.761235	-0.27351
Н	-3.451738	0.828944	1.983147	Н	-5.790515	-2.780924	0.817248
Н	-2.153898	1.089244	3.151211	Н	-6.64527	-3.004052	-0.716757
С	1.426228	3.3421	-0.041669	Н	-4.969567	-3.553859	-0.548732
Н	2.390155	3.664945	0.366134	С	-6.1868	-0.305364	-0.348967
Н	1.113803	4.086402	-0.783928	Н	-6.240211	-0.202852	0.742844
Н	0.70091	3.373426	0.775598	Н	-5.921955	0.67085	-0.76574
С	5.632375	-2.869191	0.355826	Н	-7.190048	-0.557554	-0.708949
Н	4.839581	-3.620046	0.439972				

References

[S1] A. Rana, L. C. Gomes, J. S. Rodrigues, D. M. M. Yacout, H. Arrou-Vignod, J. Sjölander, N. P. Vedin, O. E. Bakouri, K. Stensjö, P. Lindblad, L. Andersson, C. Sundberg, M. Berglund, P. Lindberg and H. Ottosson, A combined photobiological–photochemical route to C10 cycloalkane jet fuels from carbon dioxide via isoprene, *ChemRxiv*, 2022 DOI: 10.26434/chemrxiv-2022-wh442-v3

[S2] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, I A. F. zmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A., Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 16, 2016.

[S3] Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.* 2008, **120**, 215–241.

[S4] E. Pahima, S. Hoz, M. Ben-Tzion and D. T. Major, Sustain. Energy Fuels, 2019, 3, 457–466.