Interfacial synergy of Pt cocatalyst and oxygen defective Bi₂MoO₆ for boosting photocatalytic redox reaction

Xiaojing Yang[†], Bao Zhang^{‡,*}, Taifeng Liu[§], Zhenpan Chen^{#,*},

[†]Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, China

[‡]Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China

[§]National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, China

*School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, PR China
*To whom correspondence should be addressed. Email: zhangbao@henu.edu.cn;
zpchen@xtu.edu.cn

Fig. S1 AFM image of $Bi_2MoO_6\mbox{-}V_O$ catalyst

Fig. S2 XRD patterns of Bi₂MoO₆ samples

Catalysts	$V_O / (V_O + O_{latt})$	O _{latt} / (O _{latt} +V _O)
Bi ₂ MoO ₆	0.15	0.85
Bi ₂ MoO ₆ -V _O	0.20	0.80
$Pt/Bi_2MoO_6-V_O$	0.37	0.63

Table S1 The concentration of surface oxygen vacancies (V_0) and lattice oxygen (O_{latt}) for Bi_2MoO_6 catalysts

Fig. S3 Pt 4f XPS spectra of Bi_2MoO_6 samples

Tuble 52 Black experiments					
Entry	Light	Photocatalyst	O ₂	Conversion	Selectivity
				rate (%)	(%)
1	+	+	+	41	99
2	-	+	+	<1	-
3	+	-	+	<1	-
4	+	+	-	<1	-

Table S2 Black experiments

Reaction conditions: $Pt/Bi_2MoO_6-V_0$ catalyst, 10 mg; benzyl alcohol, 0.1 mmol; $C_6H_5CF_3$, 1.5 mL; reaction time, 1 h; O_2 , 0.1 MPa.

(mmol g ⁻¹ h ⁻	(%)
1)	
3.6	99
0.6	99
0.97	99
4.1	99
	(mmol g ⁻¹ h ⁻ 1) 3.6 0.6 0.97 4.1

Table S3 The photoactivity of Bi₂MoO₆ photocatalyst reported in the literature so far

References:

 B. Zhang, J. Li, Y. Y. Gao, R. F. Chong, Z. L. Wang, L. Guo, X. W. Zhang, C. Li, To boost photocatalytic activity in selective oxidation of alcohols on ultrathin Bi₂MoO₆ nanoplates with Pt nanoparticles as cocatalyst, *J. Catal.*, 2017, **345**, 96-103.

K. Q. Jing, W. Ma, Y. H. Ren, J. H. Xiong, B. B. Guo, Y. J. Song, S. J. Liang, L. Wu, Hierarchical Bi₂MoO₆ spheres in situ assembled by monolayer nanosheets toward photocatalytic selective oxidation of benzyl alcohol, *Appl. Catal.*, *B*, 2019, 243, 10-18.

 Z. L. Sun, X. L. Yang, X.-F. Yu, L. H. Xia, Y. H. Peng, Z. Li, Y. Zhang, J. B. Cheng, K. S. Zhang, J. Q. Yu, Surface oxygen vacancies of Pd/Bi₂MoO_{6-x} acts as "Electron Bridge" to promote photocatalytic selective oxidation of alcohol, *Appl. Catal.*, *B*, 2021, **285**, 119790.

Fig. S4 Characterizations of $Pt/Bi_2MoO_6-V_O$ catalysts before and after the reaction. (a) XRD patterns of $Pt/Bi_2MoO_6-V_O$ samples before and after reaction. (b-c) SEM images of $Pt/Bi_2MoO_6-V_O$ samples before and after reaction. (d) UV-Visible spectra of $Pt/Bi_2MoO_6-V_O$ samples before and after reaction. (e-h) Bi 4f, Mo 3d, O1s, and Pt 4f XPS spectra of $Pt/Bi_2MoO_6-V_O$ samples before and after reaction. (i) EPR spectra of $Pt/Bi_2MoO_6-V_O$ samples before and after reaction.

Fig. S5 Total and projected density of states (PDOS) of (a) Bi_2MoO_6 (001) surface, (b) Bi_2MoO_6 (001) surface with one oxygen vacancy, (c) Bi_2MoO_6 (001) surface with one oxygen vacancy and Pt_{13} loading. The dashed lines represent that the Fermi level is set to 0 eV.