Aluminum methylamidoborane complexes: mechanochemical

synthesis, structure, stability and reactive hydride composites

Ting Zhang, Timothy Steenhaut, Xiao Li, François Devred, Michel Devillers *, and Yaroslav Filinchuk *

Fig. S1 ¹H NMR spectrum of CH₃NH₂BH₃

-17.03 -17.63 -18.22 -18.82

Fig. S2 ¹¹B NMR spectrum of CH₃NH₂BH₃

Fig. S3 $^{\rm 13}C$ NMR spectrum of $CH_3NH_2BH_3$

Fig. S4 PXRD pattern of $CH_3NH_2BH_3$ and NaCl

Fig. S5 Rietveld refinement of the HR-PXRD diffractogram of NaAlH₄- 4 CH₃NH₂BH₃ containing Na[Al(CH₃NHBH₃)₄] (upper green marker), NaCl (lower green marker) (λ = 1.54056 Å). Observed data (Y_{obs}, red curve), Rietveld refinement profile (Y_{calc}, black curve), and difference plot (Y_{obs} - Y_{calc}, blue curve). Agreement factors, corrected for background, are R_{exp} = 9.41 %, R_{wp} = 16.3 %, R_p = 18.8%, χ^2 = 3.

Fig. S6 Rietveld refinement of the HR-PXRD diffractogram of Na[AlH(CH₃NHBH₃)₃] (λ = 1.54056 Å). Observed data (Yobs, red curve), Rietveld refinement profile (Ycalc, black curve), and difference plot (Yobs - Ycalc, blue curve). Agreement factors, corrected for background, are R_{exp} = 11.92 %, R_{wp} = 22.4 %, R_p = 38.3 %, χ 2 = 3.52.

Approach	Rotation	Milling	Break	Number of cycles	Ball to powder mass
	speed (rpm)	time(min)	time(min)		ratio
А	600	3	5	≥90	60:1
В	600	3	5	120	30:1
С	500	3	2	200	60:1
D	250	3	2	240	60:1

Table S1. Parameters used for the optimization of the synthesis of Na[Al(CH₃NHBH₃)₄]

Table S2. Milling conditions reported for the synthesis of $Na[Al(NH_2BH_3)_4]$ and used for the synthesis of the new $Na[Al(CH_3NHBH_3)_4]$ complex

Complex	Rotation speed	Milling	Break	Number of	Ball to powder
	(rpm)	time(min)	time(min)	cycles	mass ratio
$Na[AI(NH_2BH_3)_4]$	600	3	5	240	30:1
Na[Al(CH ₃ NHBH ₃) ₄]	600	3	5	120	30:1

Fig. S7 Photographs of product after different amounts of milling cycles based on Approach A.

Fig. S8 Photograph of sample used for isolating the Na[AlH(CH₃NHBH₃)₃] intermediate after 15 cycles of

milling before drying.

Complex	N-H ^{δ+} H ^{δ-} -B	D(H […] H)/Å	∠(N-H H)/ °
$Na[AI(NH_2BH_3)_4]$	N(1)-H(11)H(15)-B(1)	2.06	169.0
	N(1)-H(12)H(25)-B(2)	2.18	134.4
	N(2)-H(22)H(13)-B(1)	2.16	139.3
	N(3)-H(31)H(35)-B(3)	2.24	137.2
	N(3)-H(32)H(15)-B(1)	2.28	157.6
	N(4)-H(41)H(23)-B(2)	1.96	143.9
	N(4)-H(42)H(45)-B(4)	2.00	162.1
Na[AlH(CH ₃ NHBH ₃) ₃]	N(31)-H(31)H(01)-Al(1)	2.43	139.6
Na[Al(CH ₃ NHBH ₃) ₄]	N(21)-H(21)H(44)-B(41)	2.09	149.2
	N(31)-H(31)H(14)-B(11)	2.34	160.4
	N(41)-H(41)H(33)-B(31)	2.15	141.5
	N(41)-H(41)H(32)-B(31)	2.21	142.3

Table S3. N-H^{δ^+}...H^{δ^-}-B bond lengths and N-H...H angles in Na[Al(NH₂BH₃)₄], Na[AlH(CH₃NHBH₃)₃] and Na[Al(CH₃NHBH₃)₄] complexes.

Table S4. B-N bond lengths in CH₃NH₂BH₃, Na[AlH(CH₃NHBH₃)₃] and Na[Al(CH₃NHBH₃)₄]

				-
	$CH_3NH_2BH_3$	$Na[AIH(CH_3NHBH_3)_3]$	Na[Al(CH ₃ NHBH ₃) ₄]	
	1.58(7)	1.46(3)	1.57(1)	
N-B(bond length)		1.54(2)	1.54(7)	
		1.47(3)	1.52(7)	
			1.57(0)	

Fig. S9 The quantity of gas per Al released and temperature during the synthesis of $Na[AlH(CH_3NHBH_3)_3]$ (A) and $Na[Al(CH_3NHBH_3)_4]$ (B).

Fig. S10. Crystal packing of Al and Na coordination polyhedra in the structure of $Na[Al(CH_3NHBH_3)_4]$ and $Na[AlH(CH_3NHBH_3)_3]$ along the a (A,D), b (B,E), and c (C,F) axis. Color code: N = blue, B = green, C = grey, H = light grey, Al = red, and Na = pink. Hydrogen atoms are omitted for clarity.

Fig. S11. ATR-IR spectra of $Na[Al(CH_3NHBH_3)_4]$, $NaBH_4$, and the residue obtained upon heating $Na[Al(CH_3NHBH_3)_4]$ at 100°C.

Fig. S12. PXRD patterns of $Na[Al(CH_3NHBH_3)_4]$, $NaBH_4$, and the residue obtained upon heating $Na[Al(CH_3NHBH_3)_4]$ at 100°C.

Fig. S13 PXRD patterns of Na[Al(CH₃NHBH₃)₄]+ 12 NaH, Na[Al(CH₃NHBH₃)₄], and commercial NaH.

Fig. S14 PXRD patterns of Na[Al(CH₃NHBH₃)₄]+ 6 NaNH₂, Na[Al(CH₃NHBH₃)₄], and commercial NaNH₂.

Figure S15. TGA curve of commercial NaNH₂.

Fig. S16. MS spectra of commercial NaNH₂ corresponding to time.

Fig. S17 Zoomed in the non-H₂ MS curve of Na[Al(CH₃NHBH₃)₄] + 12 NaH

Fig. S18 Zoomed in the non-H₂ MS curve of Na[Al(CH₃NHBH₃)₄] + 6 NaNH₂

Fig. S19 Zoomed in the non-N₂ and NH₃ MS curve of commercial NaNH₂

M (g/mole)	δ (g/cm³)	V (cm³)	Gravimetric	Volumetric
			density (%)	density (g/l)
225.5	1.014	222.4	12.42	126
24	1.47	16.3	4.17	61
39	1.39	28.1	5.13	71
513.5	-	418.3	7.79	96
459.5	-	390.7	8.70	102
	225.5 24 39 513.5 459.5	225.5 1.014 24 1.47 39 1.39 513.5 - 459.5 -	225.5 1.014 222.4 24 1.47 16.3 39 1.39 28.1 513.5 - 418.3 459.5 - 390.7	Wrightholey orgythicy Vrightholey orgythicy </th

Table S5. The molar mass, density, the molar volume and hydrogen densities of $Na[Al(CH_3NHBH_3)_4]$, NaH and $NaNH_2$ and their composites.