Supplementary information

Design and Synthesis of Multifaceted Rhodanine Linked Thiophene as SnO_x–Perovskite Dual Interface Modifier Facilitating Enhanced Device Performance Through Improved Fermi Level Alignment, Defect Passivation and Reduced Energy Loss

Muthukumar Venu Rajendran¹⁺, Ananthan Alagumalai²⁺, Saraswathi Ganesan², Vidya Sudhakaran Menon², Rohith Kumar Raman¹, Senthil A. Gurusamy Thangavelu², Ananthanarayanan Krishnamoorthy^{2*}

* Corresponding author

⁺ Authors contributed equally to this work

¹Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India. Pin Code – 603203.

²Organic and Perovskite Photovoltaics Laboratory (OPPV), Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India. Pin Code – 603203.

E-mail: ananthak@srmist.edu.in

Supplementary Figures

Fig. S1 (a) ¹H-NMR data of the compound **2** and (b) ¹³C-NMR data of the compound **2**.

Fig. S2 HPLC-MS data of the compound 2.

Fig. S3 (a) ¹H-NMR data of the compound **3** and (b) ¹³C-NMR data of the compound **3**.

Fig. S4 HPLC-MS data of the compound 3.

Fig. S5 (a) ¹H-NMR data of the compound **4** and (b) ¹³C-NMR data of the compound **4**.

Fig. S6 HPLC-MS data of the compound 4.

Fig. S7 ¹H-NMR data of the compound AA6.

Fig. S8 ¹³C-NMR data of the compound AA6.

Fig. S9 HPLC-MS data of the compound AA6.

Fig. S10 UV-Vis. %T spectra of AA6 coated on ITO/Glass substrate.

Fig. S11 (a) SEM analysis of SnO_x . (b)AA6 passivated SnO_x thin films.

Table S1 EDX percentage of all possible elements in SnO_x and AA6 passivated SnO_x) _x
thin films.	

Element	SnO _x	SnO _x /0.05 mg mL ⁻¹	SnO _x / 0.1 mg mL ⁻¹	$SnO_x/0.2 mg mL^{-1}$
		AA6	AA6	AA6
	wt. %	wt. %	wt. %	wt. %
С	6.89	6.47	6.94	6.15
Ν	3.29	2.54	0.61	2.14
Ο	50.24	49.47	51.69	51.65
S	0.02	0.09	0.3	0.41
Sn	39.56	41.45	40.45	39.65
Total	100.00	100.00	100.00	100.00

Fig. S12 (a) XPS survey scan of AA6, $SnO_x \& SnO_x/AA6$ thin films. (b) S 2p plots for SnO_x and AA6 passivated SnO_x films. (c) corresponding N1s plot.

Fig. S13 EDX plot for SnO_x and AA6 passivated SnO_x films as follows. (a) SnO_x. (b) SnO_x/0.05 mg mL⁻¹ AA6. (c) SnO_x/0.1 mg mL⁻¹ AA6. (d) SnO_x/0.2 mg mL⁻¹ AA6.

Fig. S14 FTIR spectra of (a) SnO_x , AA6 and SnO_x :AA6 mixed samples. (b) Zoomed view of Sn–O vibration peak. (c) FTIR spectra of PbI₂, AA6 and AA6:PbI₂ mixed samples. (d) Zoomed view of -C=O stretching vibration peak.

Fig. S15 XPS survey scan of CsFAPbI $_3$ and CsFAPbI $_3$ /AA6 thin films.

Fig. S16 XRD spectra of CsFAPbI₃ (101) plane intensity comparison.

Fig. S17 (a) SEM grain size histogram plots of $CsFAPbI_3$ and (b–d) AA6 passivated $CsFAPbI_3$ films, grain size was calculated from ImageJ software with an average of randomly measured 75 grains.

Fig. S18 Cros-section SEM of Glass/ITO/SnO_x/CsFAPbl₃.

Fig. S19 Perovskite ink-based contact angle measurements for glass/ITO/SnO_x/1 mg mL⁻¹ AA6.

Fig. S20 (a) CV analysis of AA6 molecule (in DCM). (b) UV-Vis. spectra of AA6 molecule (in DCM).

Fig. S21 (a) Steady state PL analysis of CsFAPbI₃ coated on SnO_x and 0.2 mg mL⁻¹ AA6 passivated SnO_x films. (b) corresponding lifetime analysis.

Fig. S22 Representative J-V plots of AA6 passivated PSC. (a) bare SnO_x . (b) $SnO_x/0.05 \text{ mg mL}^{-1} \text{ AA6.}$ (c) $SnO_x/0.1 \text{ mg mL}^{-1} \text{ AA6.}$ (d) $SnO_x/0.2 \text{ mg mL}^{-1} \text{ AA6}$ and (e) $SnO_x/1 \text{ mg mL}^{-1} \text{ AA6.}$

	SnO _x	SnO _x /AA6
Sn ⁴⁺ peak [eV]	486.6	486.5
Sn²⁺ peak [eV]	487.1	487
Sn ⁰ peak [eV]	485.8	485.4
Sn⁴⁺ peak area	49819	36077
Sn²⁺ peak area	13706	7256
Sn⁰ peak area	5333	1899
Sn⁴⁺ FWHM	1.18	1.22
Sn ²⁺ FWHM	1.74	1.81
Sn⁰ FWHM	2	1.56
Sn⁴⁺ percentage	72	80
Sn²+ percentage	20	16
Sn ⁰ percentage	8	4

Table S2 Sn $3d_{5/2}$ peak fitting parameters of SnO_x & SnO_x/AA6.

	SnO _x	SnO _x /AA6
Lattice oxygen peak [eV]	530.7	530.7
Amorphous oxygen peak [eV]	532.1	532.1
Sn-O-S or Sn-O-N peak [eV]	-	532
Lattice oxygen peak area	13153	9202
Amorphous oxygen peak area	6735	3639
Sn-O-S or Sn-O-N peak area	-	913
Lattice oxygen FWHM	1.45	1.44
Amorphous oxygen FWHM	1.54	1.9
Sn-O-S or Sn-O-N FWHM	-	0.98
Lattice oxygen percentage	66	67
Amorphous oxygen percentage	33	26
Sn-O-S or Sn-O-N percentage	-	7

Table S3 O 1s peak fitting parameters of $SnO_x \& SnO_x/AA6$.

Samples	τ_1	11	τ2	12	τ_{avg}
	(ns)	(%)	(ns)	(%)	(ns)
Glass/ITO/SnO _x /CsFAPbl ₃	65	8	305	92	301
Glass/ITO/SnO _x /0.05 mg mL ⁻¹ AA6/CsFAPbI ₃	60	9	260	91	256
Glass/ITO/SnO _x /0.1 mg mL ⁻¹ AA6/CsFAPbI ₃	25	6	180	94	179
Glass/ITO/SnO _x /0.2 mg mL ⁻¹ AA6/CsFAPbl ₃	56	6	310	94	304

Table S4 TRPL lifetime parameters of CsFAPbI₃ on SnO_x and AA6 passivated SnO_x.

* Where τ_1 and τ_2 indicate fast decay and slow decay lifetime component of perovskite absorber, I_1 and I_2 refer to corresponding amplitude and τ_{avg} represents average PL lifetime.