Supplementary material

High purity hydrogen production from real biomass pyrolysis vapors via chemical looping process

Zixiang Gao ^a, Dewang Zeng ^a, Qingfeng Kong ^a, Shiliang Wu ^a, Shaojun Ren ^a, Fu Zhou ^b, Ming

Gao ^c, Feng Song ^c, Yunfei Zhai ^c, Rui Xiao ^{a,*}

^a Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of

Energy and Environment, Southeast University, Nanjing 210096, PR China

b East China Electric Power Test and Research Institute of China Datang Group Science and

Technology Research Institute Co., Ltd, Hefei 230088, PR China

° Ma'anshan Dangtu Power Generation Co., Ltd, Ma'anshan 243102, PR China

^{*} Corresponding author: ruixiao@seu.edu.cn (R. Xiao).

Fig. S1 Pyrolysis vapors analysis of sawdust pyrolyzed under 500 °C. (a) permanent gases, (b) condensable chemicals.

Fig. S2 Effluent gases profile of CLHG process with pyrolysis vapors derived under different pyrolysis temperature. a. 450 °C, b. 500 °C, c. 550 °C, d. 600 °C, e. 650 °C.

Fig. S3 XRD pattern of OC in different CLHG stage.