Supplementary Information

Continuous flow hydrogenolysis of 5-hydroxymethylfurfural into 2,5-dimethylfuran over alumina-supported nickel-iron alloy catalysts

Munsuree Kalong^a, Atthapon Srifa^{a,*}, Sakhon Ratchahat^a, Wanida Koo-amornpattana^a,

Yingyot Poo-arporn^b, Wanwisa Limphirat^b, Pongtanawat Khemthong^c,

Suttichai Assabumrungrat^{d,e}, Keiichi Tomishige^f, Sibudjing Kawi^g

^a Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand

^b Synchrotron Light Research Institute, Nakhon Ratchasima, 30000, Thailand

^c National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand

^d Center of Excellence in Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

^e Bio-Circular-Green-economy Technology & Engineering Center (BCGeTEC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

^f Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan,

^g Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore

*Corresponding authors.

Email address: atthapon.sri@mahidol.edu (A. Srifa)

1

5-HMF 2.5-DMF Т Time Р Catalyst **Reactor type** vield Solvent conv. Ref. (%) (°C) (h) (%) (bar) CuNi/Biochar THF 100 93.5 1 Batch reactor 220 6 40 2 FeCoNi/h-BN THF 180 Batch reactor 4.5 20 100 94 3 Co-CoO_x-FeNiCo/y-Al₂O₃ Batch reactor THF 190 10 100 99.9 4 4 Ni/ZrP Batch reactor THF 240 5 50 100 68.1 Ni₂In/MgO-Al₂O₃ 5 Batch reactor THF 200 10 10 100 93.2 NiCo THF 200 5 100 80.1 6 Batch reactor 4 7 Ni/WO₃ 180 >99 Batch reactor Water 6 10 96 8 NiZnAl Batch reactor 1,4-dioxane 180 12 15 100 93.6 NiZn 180 9 Batch reactor 2-propanol 20 100 99 4 10 NiFe/TiO₂ Batch reactor 1.4-dioxane 220 30 100 75 1 11 NiFe/CNT Batch reactor 1-butanol 200 3 30 100 91.3 Continuous fixed-bed reactor 12 $NiCu/ZrO_2$ (Gas phase) 1-butanol 275 WHSV=0.15 h⁻¹ 100 70 15 Continuous fixed-bed reactor 13 NiCu/Carbon WHSV=0.15 h⁻¹ (Gas phase) 1-butanol 275 15 100 45 Continuous fixed-bed reactor 14 THF NiCo/Carbon (Liquid phases) 130 WHSV=3.3 h⁻¹ 10 100 >90 Continuous fixed-bed reactor Ni_{0.74}Fe_{0.97}Al (Liquid phases) Ethanol 160 WHSV=0.3 h⁻¹ 40 100 90.5 This work

Table S1 Comparison of the catalytic performance for the hydrogenolysis of 5-HMF to 2,5-DMF over the Ni-based catalysts in batch and continuous operations

Catalysts	Weak acidic sites	Strong acidic sites		
	(mmol NH ₃ /g _{cat})	(mmol NH ₃ /g _{cat})		
Al ₂ O ₃	0.62	1.03		
FeAl	0.12	0.55		
Ni _{0.74} Fe _{0.97} Al	0.27	1.20		
NiAl	0.41	1.46		

 Table S2 Number of acidic sites obtained from the NH₃-TPD profiles of the reduced catalysts

Table S3 Elemental composition and physical properties of the fresh and spent $Ni_{0.74}Fe_{0.97}Al$ catalysts

Sample	Elemental c	ompositi	on (%) ^(a)	$S_{BET}^{}\left(b ight)$	$V_{p}^{(c)}$	$D_p^{(d)}$
	Fe	Ni	Al ₂ O ₃	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	(nm)
Fresh Ni _{0.74} Fe _{0.97} Al	11.9	9.5	78.6	164.2	0.37	9.2
Spent Ni _{0.74} Fe _{0.97} Al	11.1	9.0	79.9	157.2	0.35	9.2

^a Elemental composition obtained from XRF measurement.

 $^{\text{b}}$ S_{BET} obtained from the adsorption branch of the N_2 isotherm.

 $^{\rm c}$ V_p calculated from N_2 adsorption at a relative pressure of ~0.99.

 d D_{p} obtained from the desorption branch using the BJH method.

Figure S1. N₂ (A) adsorption and (B) desorption isotherms of FeA1, (b) $Ni_{0.33}Fe_{1.02}A1$, (c) $Ni_{0.56}Fe_{1.03}A1$, (d) $Ni_{0.74}Fe_{0.97}A1$, (e) $Ni_{1.04}Fe_{0.98}A1$, and (f) NiAl catalysts

Figure S2. XPS survey of the reduced and passivated (a) NiA1, (b) FeA1, and (c) $Ni_{0.74}Fe_{0.97}A1$ catalysts

Figure S3. 5-HMF conversion and product yields on time-on-stream over $Ni_{0.74}Fe_{0.97}Al$ catalyst at a reaction temperature of 160 °C, H₂ pressure of 30 bar, and WHSV of 0.3 h⁻¹. The mole ratio of H₂ to 5-HMF was fixed at 1: 25.

Figure S4. XRD patterns of the (a) reduced and (b) spent $Ni_{0.74}Fe_{0.97}Al$ catalysts after a reaction temperature of 160 °C, H₂ pressure of 30 bar, WHSV of 0.3 h⁻¹, and 12 h time-on-stream.

Figure S5. Typical TEM images of the (a) reduced and (b) spent $Ni_{0.74}Fe_{0.97}Al$ catalysts after a reaction temperature of 160 °C, H₂ pressure of 30 bar, WHSV of 0.3 h⁻¹, and 12 h time-on-stream.

Figure S6. TGA profiles of the reduced and spent $Ni_{0.74}Fe_{0.97}Al$ catalysts after a reaction temperature of 160 °C, H₂ pressure of 30 bar, WHSV of 0.3 h⁻¹, and 12 h time-on-stream.

References

- 1. Y. Yang, Q. Liu, D. Li, J. Tan, Q. Zhang, C. Wang and L. Ma, *RSC Advances*, 2017, 7, 16311-16318.
- 2. N. Chen, Z. Zhu, T. Su, W. Liao, C. Deng, W. Ren, Y. Zhao and H. Lü, *Chemical Engineering Journal*, 2020, **381**, 122755.
- 3. R. Ahishakiye, F. Wang, X. Zhang, M. Sun, Y. Zhai, Y. Liu, Y. Wu, M. Li, M. Li and Q. Zhang, *Chemical Engineering Journal*, 2022, **450**, 138187.
- 4. C. Zhu, Q. Liu, D. Li, H. Wang, C. Zhang, C. Cui, L. Chen, C. Cai and L. Ma, *ACS Omega*, 2018, **3**, 7407-7417.
- 5. Y. Li, R. Wang, B. Huang, L. Zhang, X. Ma, S. Zhang, Z. Zhu, H. Lü and K. Yang, *Applied Surface Science*, 2022, **604**, 154579.
- W. Zhao, Z. Huang, L. Yang, X. Liu, H. Xie and Z. Liu, *Applied Surface Science*, 2022, 577, 151869.
- 7. N. Siddiqui, A. S. Roy, R. Goyal, R. Khatun, C. Pendem, A. N. Chokkapu, A. Bordoloi and R. Bal, *Sustainable Energy & Fuels*, 2018, **2**, 191-198.
- 8. X. Kong, Y. Zhu, H. Zheng, Y. Zhu and Z. Fang, *ACS Sustainable Chemistry & Engineering*, 2017, **5**, 11280-11289.
- 9. W. Han, S. Wang, Y. Liu, C. Li, N. Yuan, L. Zhou, M. Tang and H. Ge, *Molecular Catalysis*, 2022, **531**, 112698.
- 10. M. Przydacz, M. Jędrzejczyk, J. Rogowski, M. Szynkowska-Jóźwik and A. M. Ruppert, *Energies*, 2020, **13**, 4660.
- 11. L. Yu, L. He, J. Chen, J. Zheng, L. Ye, H. Lin and Y. Yuan, *ChemCatChem*, 2015, 7, 1701-1707.
- 12. N. Viar, J. M. Requies, I. Agirre, A. Iriondo, M. Gil-Calvo and P. L. Arias, *ACS Sustainable Chemistry & Engineering*, 2020, **8**, 11183-11193.
- 13. N. Viar, J. M. Requies, I. Agirre, A. Iriondo, C. García-Sancho and P. L. Arias, *Energy*, 2022, **255**, 124437.
- 14. P. Yang, Q. Xia, X. Liu and Y. Wang, *Journal of Energy Chemistry*, 2016, **25**, 1015-1020.