Supporting Information

Self-assembled molecularly triboelectronegative cellulose nanofiber material with ultrahigh contact triboelectrification for design of green triboelectric nanogenerators

Yang Li^a, Nannan Wang^c*, Sheng Wang^c, Bofan Li^c, Enyi Ye^{b, c}, , Xianjun Loh^{b, c}, Zibiao Li^{b,c,d}*

 ^a Blood Transfusion Department, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
 ^b Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
 ^c Institute of Sustainability for Chemicals, Energy and Environment (ISCE²), A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore 627833, Singapore
 ^d Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
 *Corresponding Author. E-mail: wang_nannan@isce2.a-star.edu.sg;_lizb@imre.astar.edu.sg

Supplementary Figures

Fig. S1 Schematic diagram of TENG test.

Fig. S2 Corresponding electrical signals during the contact-separation process of the TENG's tribolayers.

Fig. S3 Schematic diagram of the preparation process of TESPN@CNF film. (a) Hydrolysis of TESPN. (b) Self-assembly process of TESPN on the surface of hydroxyl-rich CNF film. (c) Schematic diagram of the molecular structure of TESPN@CNF.

Fig. S4 13C solid-state NMR comparison of pure CNF and TESPN@CNF.

Fig. S5 Comparison of (a) output current and (b) output voltage of TESPN@CNF-based TENG at different frequencies. (c) Output current and (d) output voltage of TESPN@CNF-based TENG under different impact forces.

Fig. S6 TECD comparison of CNF-based TENG reported in recent years.

Fig. S7 Durability testing of TESPN@CNF-based TENG.

Fig. S8 Dependence of the Isc and the corresponding power on the external loading resistance of CNF-SO3Na-PTFE based TENG.

Fig. S9 Schematic of real-time charge tested by the Faraday cup.

Fig. S10 Dielectric loss comparison of cellulose acetate and TESPN@CNF films.

Fig. S11 XRD of cellulose acetate and TESPN@CNF films.

Name	Start	Peak	End	Height	FWHM	Area (P)	Area (N)	Atomic %
	BE	BE	BE	CPS	eV	CPS.eV	TPP-2M	
C1s	297.98	285.03	279.18	94423.32	1.77	301994.9	4235.3	65.64
N1s	409.98	399.61	392.18	4971.7	2.5	12496.68	113.26	1.74
O1s	544.98	532.52	525.18	144443.04	2.21	349107.62	2026.24	31.4
Si2p	109.98	102.27	95.18	1374.14	2.42	4558.51	77.22	1.21

 Table R1. The atomic content of N and Si in the TESPN@CNF film measured by XPS.

Supplementary Movies

Supplementary Video 1: Demonstration experiment of TESPN@CNF-based TENG powering 63 LEDs and electronic watch.

Supplementary Video 2: Demonstration experiment of joint state monitoring of

TESPN@CNF-based TENG attached to the human body.