SUPPLEMENTARY MATERIAL

Influence of the electrocatalyst layer thickness on alkaline DEFC performance

Michaela Roschger^a, Sigrid Wolf^a, Kurt Mayer^a, Andreas Billiani^a, Boštjan Genorio^b, Selestina Gorgieva^c, and Viktor Hacker^a

^aInstitute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25/C, 8010 Graz, Austria

^bFaculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia

^cFaculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia

Corresponding author:

Michaela Roschger Graz University of Technology Institute of Chemical Engineering and Environmental Technology Inffeldgasse 25/C, 8010 Graz, Austria E-mail: <u>michaela.roschger@tugraz.at</u>

Figure S1: Electrochemical half-cell characterization of the $Pd_{85}Ni_{10}Bi_5/C$ electrodes in a potential range from 0.05 V – 1.50 V vs. RHE with a scan rate of 10 mV s⁻¹ in 5 M KOH at RT.

	OCP / V vs. RHE			Eonset ^a / V vs. RHE			<i>j</i> ^c / mA cm ⁻²			$R / \Omega \text{ cm}^2$			
	I	П	III	I	II	III	I	II		I	II		
C1	0.988	0.984	0.980	0.881	0.897	0.899	-420.4	-692.9	-737.9	0.43-0.36	0.34-0.32	0.36-0.35	
C2	0.997	1.014	0.978	0.882	0.900	0.897	-374.2	-657.4	-689.1	0.61-0.55	0.51-0.44	0.42-0.38	
C3	0.989	0.997	0.977	0.885	0.906	0.903	-421.8	-931.0	-991.2	0.66-0.58	0.54-0.49	0.51-0.48	
C4	0.990	1.014	0.985	0.884	0.915	0.912	-489.5	-972.4	-1000.3	0.81-0.73	0.61-0.57	0.57-0.53	
	ОСР	/ V vs. F	RHE	Eonse	_{et} ^b / V vs.	RHE		j ^d / mA cn	n ⁻²		<i>R</i> / Ω cm ²		
	OCP I	/ V vs. F II	RHE	E _{onse}	et ^b / V vs.	RHE		<i>j^d / m</i> A cn II	n-2 III	I	<i>R</i> / Ω cm ²	111	
A1	OCP I 0.142	/ V vs. F II 0.116	RHE III 0.058	<i>E_{onse}</i> I 0.276	et ^b / V vs. II 0.250	RHE III 0.124	I 208.3	j^d / mA cn II 234.2	n ⁻² III 356.0	I 0.31-0.33	<i>R</i> / Ω cm ² II 0.28-0.29	III 0.2-0.23	
A1 A2	OCP I 0.142 0.106	/ V vs. F II 0.116 0.073	HE 0.058	<i>E</i> onse I 0.276 0.199	et ^b / V vs. II 0.250 0.161	RHE III 0.124 0.071	I 208.3 317.2	j^d / mA cn II 234.2 487.0	n ⁻² III 356.0 895.8	l 0.31-0.33 0.43-0.45	<i>R</i> / Ω cm² II 0.28-0.29 0.31-0.32	III 0.2-0.23 0.24-0.28	
A1 A2 A3	OCP I 0.142 0.106 0.093	/ V vs. F II 0.116 0.073 0.054	III 0.058 0.029 0.023	<i>E</i> onse I 0.276 0.199 0.155	et ^b / V vs. II 0.250 0.161 0.095	RHE III 0.124 0.071 0.037	I 208.3 317.2 482.4	j^d / mA cn II 234.2 487.0 1131.1	n ⁻² III 356.0 895.8 1152.7	l 0.31-0.33 0.43-0.45 0.58-0.59	R / Ω cm² II 0.28-0.29 0.31-0.32 0.41-0.45	III 0.2-0.23 0.24-0.28 0.35-0.37	

Table S1: Electrochemical characterization results of the cathodes and anodes for condition I, II and III.

OCP = open circuit potential; E_{onset} = onset potential; R = resistance range; j = current density; ^a at -10 mA cm⁻²; ^b at 10 mA cm⁻²; ^c j at 0.75 V vs RHE; ^d j at 0.5 V vs RHE

Figure S2: Polarization curves a) for the determination of the ORR activity for the cathodes C1 - C4 and b) for the determination of the EOR activity for the anodes A1 - A4 at condition II (resistances of the impedance spectra for iR-compensation in the insets).

Figure S3: The IR spectrum a) for the EtOH calibration peaks and b) for the evaluation of the consume of ethanol.

Figure S4: Power density (filled symbols) and polarization curves (unfilled symbols) of the single cell measurements of a) the MEA1 - MEA4 and b) the MEA5 - MEA8 at condition II.