Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Better Through Oxygen Functionality? The Benzophenone/Dicyclohexylmethanol LOHC-System

Dina Zakgeym,^{a,b} Jonas David Hofmann,^a Lukas Maurer,^a Franziska Auer,^a Karsten Müller,^c Moritz Wolf,^d Peter Wasserscheid^{a,b,*}

^a Helmholtz-Institut Erlangen-Nürnberg für Erneuerbare Energien (IEK 11), Forschungszentrum Jülich GmbH, Erlangen, Germany

^b Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik, Erlangen, Germany

^c University of Rostock, Institute of Technical Thermodynamics, Rostock, Germany

^d Karlsruhe Institute of Technology (KIT), Engler-Bunte-Institute & Institute of Catalysis Research and Technology, Karlsruhe, Germany

*Corresponding author. Address: Cauerstr. 1, 91058 Erlangen, Germany. E-Mail-address: p.wasserscheid@fz-juelich.de

Table SI-1: Acquired mass spectra and retention times of the reaction intermediates and (side) products during dehydrogenation of H14-BP.

Table SI-2: GC spectra over the course of the dehydrogenation of H14-BP with a Pt/Al_2O_3 catalyst.

Figure SI-1: Liquid-phase molar reactant and product concentration in the hydrogenation of H0-BP with 5 mass% Ru/Al₂O₃ at 180 °C and 50 bar H₂, a) desired product H14-BP (\blacksquare) and intermediate species H2-BP (\blacklozenge), H6-BP (\bigtriangledown), H8-BP (\blacktriangle), H12-BP (\bullet) as well as the sum of all Hx-DPM side products (\blacklozenge) in the first 2 h of reaction time, b) reactant H0-BP (\bigstar) and main products H14-BP (\blacksquare) and H12-BP (\bullet) as well as the sum of all Hx-DPM side products (\blacklozenge) over the course of 24 h reaction time.

Figure SI-2: Liquid-phase molar reactant and product concentration in the hydrogenation of H0-BP with 0.3 mass% Pt/Al₂O₃ at 180 °C and 50 bar H₂, a) intermediate species H2-BP (\blacklozenge), H6-BP (\checkmark) and H8-BP (\blacktriangle) as well as the sum of all Hx-DPM side products (\blacklozenge) in the first 2 h of reaction time, b) reactant H0-BP (\bigstar) and main products H14-BP (\blacksquare), H2-BP (\blacklozenge) and H8-BP (\blacktriangle), as well as the sum of all Hx-DPM side products (\blacklozenge) over the course of 26 h reaction time.

Figure SI-3: Liquid-phase molar reactant and product concentration in the hydrogenation of H0-BP with 5 mass% Pt/C at 180 °C and 50 bar H₂, a) desired product H14-BP (\blacksquare) and intermediate species H8-BP (\blacktriangle) as well as the sum of all Hx-DPM side products (\blacklozenge) in the first 2 h of reaction time, b) reactant H0-BP (\bigstar) and product H14-BP (\blacksquare) as well as the sum of all Hx-DPM side products (\blacklozenge) over the course of 24 h reaction time.

Figure SI-4: Liquid-phase molar reactant and product concentration in the hydrogenation of H0-BP with 5 mass% Ru/Al₂O₃ at 90 °C and 50 bar H₂, a) desired product H14-BP (\blacksquare) and intermediate species H2-BP (\blacklozenge), H6-BP (\bigtriangledown), H8-BP (\blacktriangle), H12-BP (\bullet) as well as the sum of all Hx-DPM side products (\blacklozenge) in the first 7 h of reaction time, b) reactant H0-BP (\bigstar) and main products H14-BP (\blacksquare) and H12-BP (\bullet) as well as the sum of all Hx-DPM side products (\blacklozenge) over the course of 24 h reaction time.

Figure SI-5: Liquid-phase molar reactant and product concentration in the hydrogenation of H0-BP with 5 mass% Ru/Al₂O₃ at 120 °C and 50 bar H₂, a) desired product H14-BP (\blacksquare) and intermediate species H2-BP (\blacklozenge), H6-BP (\bigtriangledown), H8-BP (\blacktriangle), H12-BP (\bullet) as well as the sum of all Hx-DPM side products (\blacklozenge) in the first 4 h of reaction time, b) reactant H0-BP (\bigstar) and main products H14-BP (\blacksquare) and H12-BP (\bullet) as well as the sum of all Hx-DPM side products (\blacklozenge) over the course of 24 h reaction time.

Figure SI-6: Liquid-phase molar reactant and product concentration in the hydrogenation of H0-BP with 5 mass% Ru/Al₂O₃ at 150 °C and 50 bar H₂, a) desired product H14-BP (\blacksquare) and intermediate species H2-BP (\blacklozenge), H6-BP (\bigtriangledown), H8-BP (\blacktriangle), H12-BP (\bullet) as well as the sum of all Hx-DPM side products (\blacklozenge) in the first 3 h of reaction time, b) reactant H0-BP (\bigstar) and main products H14-BP (\blacksquare) and H12-BP (\bullet) as well as the sum of all Hx-DPM side products (\blacklozenge) over the course of 24 h reaction time.

Figure SI-7: Liquid phase molar concentration of reactant and products in the dehydrogenation of 0.15 mol H14-BP at 230 °C with 200 mL min⁻¹ argon overflow over a) Pd/C, 5 mass%, b) Ir/C, 5 mass%, or c) Rh/C, 5 mass%: H14-BP (■), H12-BP (●), H8-BP (▲), H6-BP (▼), H12-DPM (◀), H6-DPM (♦), H0-DPM (►). Pd/C: Sigma Aldrich, 75992; Ir/C: Fuelcellstore, 6091601; Rh/C: Alfa Aesar, A15965.

Figure SI-8: Liquid phase molar concentrations of reactant H14-BP (\bullet) and only product H12-BP (\bullet) in the dehydrogenation of 0.15 mol H14-BP at 170 °C with 200 mL min⁻¹ argon overflow over CuO/ZnO/Al₂O₃.

Figure SI-9: Liquid phase molar concentration of reactant and products in the dehydrogenation of 0.15 mol H14-BP at a) 220 °C, b) 230 °C, c) 240 °C, and d) 250 °C, with 200 mL min⁻¹ argon overflow over Pt/C, 5 mass%: H14-BP (\blacksquare), H12-BP (\bullet), H8-BP (\blacktriangle), H6-BP (\checkmark), H0-BP (\bigstar), H0-BP (\bigstar), H6-DPM (\blacklozenge).