Electronic Supplementary Information for:

Preparation and characterisation of graphene oxide containing block copolymer worm gels

Qi Yue,^{a,b} Shang-Pin Wen^a and Lee A. Fielding*^{a,b}

a. Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.

b. Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

* lee.fielding@manchester.ac.uk

Figure S1. (a) Synthesis of PGMA_x macromolecular chain-transfer agent (macro-CTA) *via* RAFT solution polymerisation in ethanol at 70 °C and PGMA_x-PHPMA_y (G_x -H_y) diblock copolymer *via* RAFT aqueous dispersion polymerisation at 70 °C and 20 % w/w. Glycerol monomethacrylate (GMA) and 2-hydroxypropyl methacrylate (HPMA) were used as monomers, 4-cyano-4-(2-phenylethane sulfanylthiocarbonyl)sulfanylpentanoic acid (PETTC) was used as a RAFT agent, and 4,4-azobis(4-cyanovaleric acid) (ACVA) as a free-radical initiator. (b) Synthesis of PGMA_x macromolecular chain-transfer agent (macro-CTA) *via* RAFT solution polymerisation in ethanol at 70 °C and 20 % w/w. GMA and benzyl methacrylate (BZMA) were used as monomers, PETTC was used as a RAFT agent, and ACVA as a free-radical initiator.

Composition	$M_n/g \text{ mol}^{-1}$	<i>M</i> _/ <i>M</i> _
PGMA ₅₂ ^b	4 700	1.17
PGMA ₆₀ ^b	5 400	1.26
GMA ₅₂ -HPMA ₁₃₀ ^د	27 000	1.06
GMA ₆₀ -BzMA ₇₀ ^d	23 000	1.27

^{*a*} Molecular weight distributions were determined using DMF eluent, a refractive index detector and polystyrene calibration standards. ^{*b*} Prepared by RAFT solution polymerisation in ethanol at 70 °C, 50 % w/w GMA and PETTC/ACVA molar ratio = 5:1. ^{*c*} Prepared by RAFT dispersion polymerisation in water at 70 °C, 20 % w/w and PGMA₅₂ macro-CTA/ACVA molar ratio = 5:1. ^{*d*} Prepared by RAFT dispersion polymerisation in methanol at 64 °C, 20 % w/w and PGMA₆₀ macro-CTA/ACVA molar ratio = 5:1.

Figure S2. DMF GPC data recorded for (a) PGMA₅₂ and PGMA₅₂-PHPMA₁₃₀ and (b) PGMA₆₀ and PGMA₆₀- PBzMA₇₀. M_n and M_w/M_n values were determined against polystyrene calibration standards.

Figure S3. Assigned ¹H NMR spectra of (a) $PGMA_{52}$ macro-CTA in D_2O and $PGMA_{52}$ -PHPMA₁₃₀ diblock copolymer in DMSO-d6; (b) $PGMA_{60}$ macro-CTA in D_2O and $PGMA_{60}$ -PBzMA₇₀ diblock copolymer in DMSO-d6. Both $PGMA_{52}$ -PHPMA₁₃₀ and $PGMA_{52}$ -PBzMA₇₀ were freeze-dried prior to dilution in DMSO-d6.

Figure S4. (a) Dynamic light scattering studies as a function of temperature for 0.1 % w/w aqueous dispersions of PGMA₅₂-PHPMA₁₃₀. The sample was cooled from 40 to 2 °C (blue data) and subsequently heated from 2 to 40 °C (red data). Sphere equivalent diameters (Z-average) were recorded at 3 °C intervals. (b) Storage modulus (G', blue data) and loss modulus (G'', red data) versus % strain obtained by oscillatory rheology on 20 % w/w G₅₂-H₁₃₀. Measurements were conducted at 10 rad s⁻¹ at 25 °C. (c) Temperature-dependent oscillatory rheology studies obtained for 20 % w/w aqueous dispersions of G₅₂-H₁₃₀. Measurements were conducted with an angular frequency of 10 Hz and an applied strain amplitude of 1.0 %. (d) TEM image of diluted dispersion of G₅₂-H₁₃₀ worm gel prepared at 20 % w/w. The inset shows a digital photograph of the 20 % w/w copolymer dispersion at room temperature.

Figure S5. (a) Dynamic light scattering studies as a function of temperature for 0.1 % w/w aqueous dispersions of PGMA₆₀-PBzMA₇₀. The sample was heated from 25 to 60 °C (blue data) and subsequently cooled back to 25 °C (red data). Sphere equivalent diameters (Z-average) were recorded at 5 °C intervals. (b) Storage modulus (G', blue data) and loss modulus (G'', red data) versus % strain obtained by oscillatory rheology for 20 % w/w G₆₀-B₇₀. Measurements were conducted at 10 Hz at 25 °C. (c) TEM image of diluted dispersion of G₆₀-B₇₀ worm gel prepared at 20 % w/w in methanol. The inset shows a digital photograph of the 20 % w/w copolymer dispersion at room temperature.

Figure S6. (a) Digital photographs of aqueous G_{52} - H_{130} dispersions after being cooled, diluted with water at approximately 5 °C and re-heated to room temperature for at least 10 minutes. Left = 15 % w/w G_{52} - H_{130} and right = 10 % w/w G_{52} - H_{130} . (b) Digital photographs of G_{60} - B_{70} dispersions after being heated to approximately 56 °C, diluted with methanol or water and cooling to room temperature for at least 10 minutes. Left = original 20 % w/w G_{60} - B_{70} dispersion in methanol; middle = 15 % w/w G_{60} - B_{70} diluted with water and right = 15 % w/w G_{60} - B_{70} diluted with methanol.

Figure S7. TEM images recorded for (a) 15 % w/w G_{52} -H₁₃₀-0.8% GO; (b) G_{52} -H₁₃₀-1.0% GO; (c) G_{52} -H₁₃₀-1.1% GO; (d) G_{52} -H₁₃₀-1.6% GO; (e) G_{52} -H₁₃₀-1.8% GO and (f) G_{52} -H₁₃₀-2.2% GO. Samples were diluted to 0.01 % w/w before being deposited onto carbon coated TEM grids at room temperature and being stained using ruthenium tetroxide vapour.

Figure S8. TEM images recorded for 15 % w/w (a) G_{60} - B_{70} -3.0% GO; (b) G_{60} - B_{70} -3.4% GO and (c) G_{60} - B_{70} -3.7% GO. Samples were prepared by mixing methanolic worm gels with aqueous GO at 56 °C before being allowed to return to room temperature. TEM grids were prepared by diluting these samples to 0.01 % w/w before being deposited on to carbon coated TEM grids at room temperature and being stained using ruthenium tetroxide vapour.

Figure S9. Zeta potential versus pH recorded for: (a) G_{52} solution, GO dispersion (4 mg ml⁻¹), and G_{52} mixed with different concentrations of GO (0.7 %, 1.5 % and 2.2 % based on homopolymer); (b) G_{52} -H₁₃₀ dispersion, GO dispersion (4 mg ml⁻¹), and G_{52} -H₁₃₀ mixed with different concentrations of GO (0.7 %, 1.5 % and 2.2 % based on copolymer); (c) G_{60} solution, GO dispersion (4 mg ml⁻¹), and G_{60} mixed with different concentrations of GO (2.3 %, 2.8 % and 3.1 % based on homopolymer); (d) G_{60} -B₇₀ dispersion, GO dispersion (4 mg ml⁻¹), and G_{60} -B₇₀ mixed different concentrations of GO (2.3 %, 2.8 % and 3.1 % based on copolymer). Samples were diluted in 0.1 mM KCl and titrated from pH ~10 to 2 using HCl.

Figure S10. Critical gelation temperature (CGT) recorded by oscillatory rheology over several cooling-heating cycles for G_{52} -H₁₃₀-1.5% GO based on copolymer. Measurements were conducted at an angular frequency of 1 rad s⁻¹ and an applied strain amplitude of 1.0 %. Samples were heated/cooled between 2°C and 22 °C in 1 °C intervals with an equilibration time of 3 min at each temperature. Between each heating/cooling cycle samples were allowed to recover for 30 minutes.

Figure S11. (a) $PGMA_{60}$ -PBzMA₇₀ block copolymer dispersions in methanol after mixing with graphene oxide dispersed in methanol (2.8 to 4.6 % w/w based on copolymer) at 56 °C and equilibration overnight at room temperature. (b) Storage modulus (G') versus % strain for 15 % w/w G₆₀-B₇₀ with various GO concentrations (3.2 - 4.1 % w/w based on copolymer) in methanol. (c) Average storage modulus measured between 0.01 and 2 % strain for different GO-containing G₆₀-B₇₀ copolymer methanolic dispersions. All oscillatory rheology measurements were conducted at a frequency of 10 Hz, a strain of 1.0 % and at room temperature.

Figure S12. TEM images recorded for 15 % w/w (a) G_{60} - B_{70} , (b) G_{60} - B_{70} -3.5% GO, (c) G_{60} - B_{70} -4.1% GO and (d) G_{60} - B_{70} -4.6% GO prepared in methanol. Samples were diluted to 0.01 % w/w before being deposited on to carbon coated TEM grids at room temperature and being stained using ruthenium tetroxide vapour.

Figure S13. TEM images recorded for GO dispersion. TEM grids were prepared by diluting the dialysed and sonicated GO dispersion to 0.01 % w/w before being deposited on to carbon-coated TEM grids at room temperature and being stained using ruthenium tetroxide vapour.