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Autónoma de México,Ciudad Universitaria, DF 04510, Mexico

4Institut de Biologie Paris Seine, Sorbonne Université, 7 quai Saint Bernard, 75005 Paris, France
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Label Type Symbol Reference

Cazabat1986 Spreading � A. Cazabat and M. C. Stuart, J. Phys. Chem. 90, 5845 (1986)
Biance2004 Spreading • A.-L. Biance et al., Phys. Rev. E 69, 016301 (2004)
Eddi2013 Spreading � A. Eddi et al., Phys. Fluids 25, 013102 (2013)
Chen2014 Spreading ⬢ L. Chen and E. Bonaccurso, Phys. Rev. E 90, 022401 (2014)
Menchaca2001 Coalescence O A. Menchaca-Rocha et al., Phys. Rev. E 63, 046309 (2001)
Wu2004 Coalescence D M. Wu et al., Phys. Fluids 16, L51–L54 (2004)
Yao2005 Coalescence . W. Yao et al., Phys. Rev. E 71, 016309 (2005)
Thoroddsen2005 Coalescence 7 S.T. Thoroddsen et al., J. Fluid Mech. 527, 85–114 (2005)
Thoroddsen2005b Coalescence 7 S.T. Thoroddsen et al., Phys. Fluids 17, 071703 (2005)
Aarts2005 Coalescence � D. Aarts et al., Phys. Rev. Lett. 95, 164503 (2005)
Aarts2008 Coalescence � D. Aarts and H. Lekkerkerker, J. Fluid Mech. 71, 275–294 (2008)
Yokota2011 Coalescence 9 M. Yokota and K. Okumura, PNAS 108, 6395–6398 (2011)
Paulsen2011 Coalescence ◦ J. Paulsen et al., Phys. Rev. Lett. 106, 114501 (2011)
Paulsen2014 Coalescence ◦ J. Paulsen et al., Nat. Commun. 5, 1–7 (2014)
Soto2018 Coalescence 4 A.M. Soto et al., J. Fluid Mech. 846, 143–165 (2018)
Rahman2019 Coalescence 3 M. Rahman et al., Phys. Fluids 31, 012104 (2019)
Chen1997 Pinching � Y.J. Chen and P.H. Steen, J. Fluid Mech. 341, 245–267 (1997)
McKinley2000 Pinching � G.H. McKinley and A. Tripathi, J. Rheol. 44, 653–670 (2000)
Chen2002 Pinching 6 A.U. Chen et al., Phys. Rev. Lett. 88, 174501 (2002)
Burton2004 Pinching ? J.C. Burton et al., Phys. Rev. Lett. 92, 244505 (2004)
Burton2005 Pinching ? J.C. Burton et al., Phys. Rev. Lett. 94, 184502 (2005)
Burton2007 Pinching ? J.C. Burton et al., Phys. Rev. E 75, 036311 (2007)
Keim2006 Pinching × N.C. Keim et al., Phys. Rev. Lett. 97, 144503 (2006)
Bolanos2009 Pinching + R. Bolanos-Jiménez et al., Phys. Fluids 21, 072103 (2009)
Goldstein2010 Pinching � R.E. Goldstein et al., PNAS 107, 21979–21984 (2010)

TABLE I: Summary of the original studies reproduced in the article.

I. EXPERIMENTAL DATA SUMMARY

Our study provides a meta-analysis of a number of experiments on spreading, coalescence and pinching of fluids
of various properties. In this section we explain the protocol we followed to extract the data sets from the original
articles and we give tables summarizing the properties of all experiments reproduced in the figures of the article.

A. Data extraction

All data were extracted semi-manually from the figures of the original articles given in Table I. For a given figure,
the data points were identified manually on the free imagining software Fiji [1]. The coordinates of the data points
were stored and converted to standard units (seconds and meters). The precision is expected to be on the order of
the size of the symbols used in the original graphs. When the sampling was high and multiple data points overlapped
we only selected a subsets of the original data points. We omitted data points with large error bars, which usually
corresponded to the first few measurements at the limit of the resolution of the experiment. All extracted data sets
(t and d) are given as two-columns text-files in the supplementary archive ‘DataSets.zip’.

B. Data summary

The values of the material parameters ρ, η and Γ, of the extrinsic size D, and the associated value of the Ohnesorge
number for spreading, coalescence and pinching experiments are given in Tables II, III and IV respectively, which can
be found in the supplementary file ‘DataSummary.csv’. More details on each data set are given in section VI.

C. Extended figure legends

The labels associated with each data set defined in Tables II, III and IV are used in the legends of each figure present
in the supplementary archive ‘FigureLegends.zip’. For each figure of the article and of the present supplementary
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Label ρ (kg.m−3) η (kg.m−1.s−1) Γ (kg.s−2) D (m) Oh τvi (s) τic (s) τvc (s) τo (s)
Cazabat1986˙Fig1a˙0p78 9.00e+02 2.00e-02 2.00e-02 5.71e-04 1.97e-01 1.47e-02 2.89e-03 5.71e-04 2.22e-05
Cazabat1986˙Fig1a˙1p5 9.00e+02 2.00e-02 2.00e-02 7.10e-04 1.77e-01 2.27e-02 4.01e-03 7.10e-04 2.22e-05
Cazabat1986˙Fig1a˙2p9 9.00e+02 2.00e-02 2.00e-02 8.84e-04 1.59e-01 3.52e-02 5.58e-03 8.84e-04 2.22e-05
Cazabat1986˙Fig1a˙3p8 9.00e+02 2.00e-02 2.00e-02 9.68e-04 1.52e-01 4.21e-02 6.38e-03 9.68e-04 2.22e-05
Cazabat1986˙Fig1a˙4p7 9.00e+02 2.00e-02 2.00e-02 1.04e-03 1.46e-01 4.85e-02 7.10e-03 1.04e-03 2.22e-05
Cazabat1986˙Fig1a˙7p8 9.00e+02 2.00e-02 2.00e-02 1.23e-03 1.34e-01 6.80e-02 9.15e-03 1.23e-03 2.22e-05
Cazabat1986˙Fig1a˙14p4 9.00e+02 2.00e-02 2.00e-02 1.51e-03 1.21e-01 1.02e-01 1.24e-02 1.51e-03 2.22e-05
Cazabat1986˙Fig1b˙37p9 9.00e+02 1.00e+00 2.00e-02 2.08e-03 5.16e+00 3.90e-03 2.02e-02 1.04e-01 2.78e+00
Cazabat1986˙Fig1b˙5p8 9.00e+02 1.00e+00 2.00e-02 1.11e-03 7.06e+00 1.12e-03 7.89e-03 5.57e-02 2.78e+00
Cazabat1986˙Fig1b˙4p03 9.00e+02 1.00e+00 2.00e-02 9.87e-04 7.50e+00 8.76e-04 6.57e-03 4.93e-02 2.78e+00
Cazabat1986˙Fig1b˙1p35 9.00e+02 1.00e+00 2.00e-02 6.85e-04 9.00e+00 4.23e-04 3.81e-03 3.43e-02 2.78e+00
Cazabat1986˙Fig1b˙0p35 9.00e+02 1.00e+00 2.00e-02 4.37e-04 1.13e+01 1.72e-04 1.94e-03 2.18e-02 2.78e+00
Biance2004˙Fig3˙0p27 1.00e+03 1.00e-03 7.20e-02 2.70e-04 7.17e-03 7.29e-02 5.23e-04 3.75e-06 1.93e-10
Biance2004˙Fig3˙0p7 1.00e+03 1.00e-03 7.20e-02 7.00e-04 4.45e-03 4.90e-01 2.18e-03 9.72e-06 1.93e-10
Biance2004˙Fig3˙1p2 1.00e+03 1.00e-03 7.20e-02 1.20e-03 3.40e-03 1.44e+00 4.90e-03 1.67e-05 1.93e-10
Eddi2013˙Fig4˙0p37 1.20e+03 5.00e-02 6.47e-02 3.70e-04 2.95e-01 3.30e-03 9.71e-04 2.86e-04 2.48e-05
Eddi2013˙Fig4˙0p5 1.20e+03 5.00e-02 6.47e-02 5.00e-04 2.53e-01 6.02e-03 1.53e-03 3.86e-04 2.48e-05
Eddi2013˙Fig4˙0p63 1.20e+03 5.00e-02 6.47e-02 6.30e-04 2.26e-01 9.56e-03 2.16e-03 4.87e-04 2.48e-05
Eddi2013˙Fig5a˙105deg 1.20e+03 5.00e-02 6.47e-02 5.00e-04 2.53e-01 6.02e-03 1.53e-03 3.86e-04 2.48e-05
Eddi2013˙Fig5b˙0 9.98e+02 1.00e-03 7.20e-02 5.00e-04 5.28e-03 2.49e-01 1.32e-03 6.94e-06 1.93e-10
Eddi2013˙Fig5b˙115 9.98e+02 1.00e-03 7.20e-02 5.00e-04 5.28e-03 2.49e-01 1.32e-03 6.94e-06 1.93e-10
Eddi2013˙Fig6˙water 9.98e+02 1.00e-03 7.20e-02 5.00e-04 5.28e-03 2.49e-01 1.32e-03 6.94e-06 1.93e-10
Eddi2013˙Fig6˙11 1.20e+03 1.15e-02 6.73e-02 5.00e-04 5.71e-02 2.62e-02 1.50e-03 8.54e-05 2.79e-07
Eddi2013˙Fig6˙1120 1.26e+03 1.12e+00 6.31e-02 5.00e-04 5.61e+00 2.82e-04 1.58e-03 8.87e-03 2.80e-01
Eddi2013˙Fig6˙220 1.24e+03 2.20e-01 6.34e-02 5.00e-04 1.11e+00 1.41e-03 1.56e-03 1.74e-03 2.14e-03
Chen2014˙Fig3b˙60cP 1.21e+03 6.01e-02 6.23e-02 9.00e-04 2.31e-01 1.63e-02 3.76e-03 8.68e-04 4.63e-05
Chen2014˙Fig3b˙35p5cP 1.19e+03 3.55e-02 6.35e-02 9.00e-04 1.36e-01 2.73e-02 3.70e-03 5.03e-04 9.29e-06

TABLE II: Summary of the properties of all spreading experiments reproduced in the article: density ρ, viscosity η, surface

tension Γ, extrinsic size D, Ohnesorge number Oh = η/(ρΓD)
1
2 , together with the values of the four time scales τvi, τic, τvc

and τo. The content of this table is available in the supplementary file ‘DataSummary.csv’.

material, the archive contain a txt file with the labels of all the data plotted in the given figure. The labels can then
be used to recover the values of the material parameters, of D, and of any additional metric by using the various
tables of this supplementary material.
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Label ρ (kg.m−3) η (kg.m−1.s−1) Γ (kg.s−2) D (m) Oh τvi (s) τic (s) τvc (s) τo (s)
Menchaca2001˙Fig9 1.36e+04 1.60e-03 4.35e-01 2.60e-03 4.08e-04 5.74e+01 2.34e-02 9.56e-06 1.59e-12
Wu2004˙Fig4˙1p94 9.98e+02 1.00e-03 7.27e-02 1.94e-03 2.67e-03 3.76e+00 1.00e-02 2.67e-05 1.90e-10
Yao2005˙100000cS˙5cm 9.70e+02 9.70e+01 9.00e-03 5.00e-02 1.47e+02 2.50e-02 3.67e+00 5.39e+02 1.16e+07
Yao2005˙100000cS˙0p5cm 9.70e+02 9.70e+01 9.00e-03 5.00e-03 4.64e+02 2.50e-04 1.16e-01 5.39e+01 1.16e+07
Yao2005˙10000cS˙0p5cm 9.70e+02 9.70e+00 9.00e-03 5.00e-03 4.64e+01 2.50e-03 1.16e-01 5.39e+00 1.16e+04
Yao2005˙1000cS˙0p5cm 9.70e+02 9.70e-01 9.00e-03 5.00e-03 4.64e+00 2.50e-02 1.16e-01 5.39e-01 1.16e+01
Thoroddsen2005˙Fig6 1.00e+03 1.00e-03 7.20e-02 1.12e-03 3.53e-03 1.24e+00 4.39e-03 1.55e-05 1.93e-10
Thoroddsen2005b˙Fig4 7.89e+02 1.20e-03 2.15e-02 1.30e-03 8.08e-03 1.11e+00 8.98e-03 7.26e-05 4.74e-09
Aarts2005˙Fig2˙100mPas 9.70e+02 1.00e-01 2.00e-02 2.00e-03 5.08e-01 3.88e-02 1.97e-02 1.00e-02 2.58e-03
Aarts2005˙Fig2˙1Pas 9.70e+02 1.00e+00 2.00e-02 2.00e-03 5.08e+00 3.88e-03 1.97e-02 1.00e-01 2.58e+00
Aarts2005˙Fig2˙500mPas 9.70e+02 5.00e-01 2.00e-02 2.00e-03 2.54e+00 7.76e-03 1.97e-02 5.00e-02 3.22e-01
Aarts2005˙Fig2˙300mPas 9.70e+02 3.00e-01 2.00e-02 2.00e-03 1.52e+00 1.29e-02 1.97e-02 3.00e-02 6.96e-02
Aarts2005˙Fig3˙5mPas 9.98e+02 5.00e-03 2.00e-02 2.00e-03 2.50e-02 7.98e-01 2.00e-02 5.00e-04 3.13e-07
Aarts2005˙Fig3˙20mPas 9.98e+02 2.00e-02 2.00e-02 2.00e-03 1.00e-01 2.00e-01 2.00e-02 2.00e-03 2.00e-05
Aarts2005˙Fig3˙50mPas 9.98e+02 5.00e-02 2.00e-02 2.00e-03 2.50e-01 7.98e-02 2.00e-02 5.00e-03 3.13e-04
Aarts2005˙Fig3˙1mPas 9.98e+02 1.00e-03 7.20e-02 2.00e-03 2.64e-03 3.99e+00 1.05e-02 2.78e-05 1.93e-10
Aarts2008˙Fig9˙bubb17 1.17e+03 8.00e-03 1.60e-07 1.70e-05 1.42e+02 4.23e-05 5.99e-03 8.50e-01 1.71e+04
Aarts2008˙Fig9˙drop17 1.17e+03 3.10e-02 1.60e-07 1.70e-05 5.50e+02 1.09e-05 5.99e-03 3.29e+00 9.95e+05
Yokota2011˙Fig2˙289 1.23e+03 2.89e-01 2.00e-02 1.97e-03 1.31e+00 1.66e-02 2.17e-02 2.85e-02 4.91e-02
Yokota2011˙Fig2˙888 1.26e+03 8.88e-01 2.00e-02 2.03e-03 3.92e+00 5.86e-03 2.30e-02 9.02e-02 1.39e+00
Paulsen2011˙Fig2˙1p9 1.20e+03 1.90e-03 6.50e-02 2.00e-03 4.81e-03 2.53e+00 1.22e-02 5.85e-05 1.35e-09
Paulsen2011˙Fig2˙11 1.20e+03 1.10e-02 6.50e-02 2.00e-03 2.79e-02 4.36e-01 1.22e-02 3.38e-04 2.63e-07
Paulsen2011˙Fig2˙48 1.20e+03 4.80e-02 6.50e-02 2.00e-03 1.22e-01 1.00e-01 1.22e-02 1.48e-03 2.18e-05
Paulsen2011˙Fig2˙230 1.20e+03 2.30e-01 6.50e-02 2.00e-03 5.82e-01 2.09e-02 1.22e-02 7.08e-03 2.40e-03
Paulsen2014˙Fig1 1.07e+03 1.00e-03 3.90e-02 2.00e-03 3.46e-03 4.28e+00 1.48e-02 5.13e-05 6.14e-10
Soto2018˙Fig5 1.01e+03 9.64e-04 5.87e-02 3.00e-04 7.21e-03 9.47e-02 6.83e-04 4.93e-06 2.56e-10
Rahman2019˙Fig6˙6p65 1.26e+03 1.21e+00 6.40e-02 4.22e-04 6.54e+00 1.86e-04 1.22e-03 7.96e-03 3.40e-01
Rahman2019˙Fig6˙1p84 1.24e+03 3.33e-01 6.47e-02 4.10e-04 1.84e+00 6.26e-04 1.15e-03 2.11e-03 7.11e-03
Rahman2019˙Fig6˙0p146 1.17e+03 2.50e-02 6.71e-02 3.78e-04 1.45e-01 6.68e-03 9.70e-04 1.41e-04 2.97e-06
Rahman2019˙Fig6˙0p00692 9.98e+02 1.00e-03 7.28e-02 3.64e-04 6.15e-03 1.32e-01 8.13e-04 5.00e-06 1.89e-10

TABLE III: Summary of the properties of all coalescence experiments reproduced in the article: density ρ, viscosity η, surface

tension Γ, extrinsic size D, Ohnesorge number Oh = η/(ρΓD)
1
2 , together with the values of the four time scales τvi, τic, τvc

and τo. The content of this table is available in the supplementary file ‘DataSummary.csv’.
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Label ρ (kg.m−3) η (kg.m−1.s−1) Γ (kg.s−2) D (m) Oh τvi (s) τic (s) τvc (s) τo (s)
Chen1997˙Fig7 1.20e+00 3.00e-03 6.00e-02 1.90e-02 8.11e-02 1.44e-01 1.17e-02 9.50e-04 6.25e-06
McKinley2000˙Fig4 1.26e+03 1.03e+00 6.48e-02 3.00e-03 2.08e+00 1.10e-02 2.29e-02 4.77e-02 2.07e-01
Chen2002˙Fig3 9.98e+02 9.13e-04 7.06e-02 3.60e-03 1.81e-03 1.42e+01 2.57e-02 4.66e-05 1.53e-10
Burton2004˙Fig5 1.36e+04 1.50e-03 4.80e-01 3.18e-03 3.30e-04 9.13e+01 3.01e-02 9.92e-06 1.08e-12
Burton2005˙0p9 9.98e+02 9.00e-04 7.20e-02 3.20e-03 1.88e-03 1.14e+01 2.13e-02 4.00e-05 1.41e-10
Burton2005˙37p4 1.00e+03 3.74e-02 6.50e-02 3.20e-03 8.20e-02 2.74e-01 2.25e-02 1.84e-03 1.24e-05
Burton2005˙1011 1.20e+03 1.01e+00 6.30e-02 3.20e-03 2.06e+00 1.22e-02 2.50e-02 5.14e-02 2.17e-01
Burton2007˙Fig7 1.25e+02 nan 2.87e-04 5.30e-04 nan nan 8.06e-03 nan nan
Keim2006˙Fig2˙4p1 1.00e+03 1.00e-03 7.20e-02 4.10e-03 1.84e-03 1.68e+01 3.09e-02 5.69e-05 1.93e-10
Keim2006˙Fig2˙1p5 1.00e+03 1.00e-03 7.20e-02 1.50e-03 3.04e-03 2.25e+00 6.85e-03 2.08e-05 1.93e-10
Bolanos2009˙Fig6˙water 9.98e+02 1.00e-03 7.20e-02 4.19e-04 5.76e-03 1.75e-01 1.01e-03 5.82e-06 1.93e-10
Bolanos2009˙Fig7˙water 9.98e+02 1.00e-03 7.20e-02 1.60e-03 2.95e-03 2.55e+00 7.53e-03 2.22e-05 1.93e-10
Bolanos2009˙Fig6˙O2 9.30e+02 9.30e-03 1.99e-02 2.50e-04 1.37e-01 6.25e-03 8.55e-04 1.17e-04 2.18e-06
Bolanos2009˙Fig7˙O7 9.13e+02 4.60e-03 1.94e-02 7.50e-04 3.99e-02 1.12e-01 4.46e-03 1.78e-04 2.83e-07
Bolanos2009˙Fig7˙O8 9.30e+02 9.30e-03 1.99e-02 7.50e-04 7.89e-02 5.63e-02 4.44e-03 3.51e-04 2.18e-06
Bolanos2009˙Fig7˙O9 9.37e+02 1.87e-02 2.02e-02 7.50e-04 1.57e-01 2.82e-02 4.42e-03 6.94e-04 1.71e-05
Bolanos2009˙Fig8˙G1 1.18e+03 2.44e-02 6.69e-02 1.02e-03 8.57e-02 5.09e-02 4.36e-03 3.74e-04 2.75e-06
Bolanos2009˙Fig8˙G2 1.24e+03 2.22e-01 6.42e-02 1.02e-03 7.80e-01 5.83e-03 4.55e-03 3.55e-03 2.16e-03
Bolanos2009˙Fig8˙G4 1.25e+03 8.00e-01 6.31e-02 1.02e-03 2.81e+00 1.65e-03 4.63e-03 1.30e-02 1.03e-01
Bolanos2009˙Fig9˙G5 1.18e+03 2.38e-02 6.69e-02 2.55e-03 5.30e-02 3.23e-01 1.71e-02 9.07e-04 2.55e-06
Bolanos2009˙Fig9˙G6 1.23e+03 1.98e-01 6.41e-02 2.55e-03 4.42e-01 4.04e-02 1.79e-02 7.89e-03 1.54e-03
Bolanos2009˙Fig6˙O1 9.13e+02 4.60e-03 1.94e-02 2.50e-04 6.91e-02 1.24e-02 8.58e-04 5.93e-05 2.83e-07
Bolanos2009˙Fig6˙O3 9.37e+02 1.87e-02 2.02e-02 2.50e-04 2.72e-01 3.13e-03 8.51e-04 2.31e-04 1.71e-05
Bolanos2009˙Fig9˙G8 1.25e+03 8.14e-01 6.31e-02 2.55e-03 1.81e+00 1.00e-02 1.82e-02 3.29e-02 1.08e-01
Goldstein2010˙Fig5 1.22e+00 3.00e-03 2.00e-02 1.50e-02 1.57e-01 9.15e-02 1.43e-02 2.25e-03 5.53e-05

TABLE IV: Summary of the properties of all pinching experiments reproduced in the article: density ρ, viscosity η, surface

tension Γ, extrinsic size D, Ohnesorge number Oh = η/(ρΓD)
1
2 , together with the values of the four time scales τvi, τic, τvc

and τo. The content of this table is available in the supplementary file ‘DataSummary.csv’.
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II. VISCO-INERTIO-CAPILLARY SYSTEMS OF UNITS

In this section, we provide additional details on each of the four systems of units introduced in the article: visco-
inertial (vi), visco-capillary (vc), inertio-capillary (ic) and Ohnesorge units (Oh).

A. Physical quantities

In the article we provided the characteristic length, time and mass scales associated with each system of units.
From these quantities, the values of any quantity that can be expressed in units of mass, length and time can be
derived. For instance, in the article we systematically gave the values of the stress Σ = m.`−1.τ−2. In Table V we
give the expressions for a few other quantities of interest.

Quantity vi units vc units ic units Oh units

Time τ ρD2

η
ηD
Γ

(
ρD3

Γ

) 1
2 η3

Γ2ρ

Length ` D D D η2

Γρ

Mass m ρD3 η2D2

Γ
ρD3 η6

Γ3ρ2

Viscosity η η (ρΓD)
1
2 η

Surface tension η2

ρD
Γ Γ Γ

Density ρ η2

ΓD
ρ ρ

Speed η
ρD

Γ
η

(
Γ
ρD

) 1
2 Γ

η

Acceleration η2

ρ2D3
Γ2

η2D
Γ
ρD2

Γ3ρ
η4

Energy η2D
ρ

ΓD2 ΓD2 η4

ρ2Γ

Force η2

ρ
ΓD ΓD η2

ρ

Stress η2

ρD2
Γ
D

Γ
D

Γ2ρ
η2

Power η3

ρ2D
Γ2D
η

(
Γ3D
ρ

) 1
2 ηΓ

ρ

TABLE V: Summary of the main physical quantities in the four systems of units used in the article.

B. Scaling regimes

In the article we mostly considered three simple scaling regimes (vi, vc and ic), and two non-trivial regimes, namely
the size-dependent visco-capillary regime of Tanner’s law and the size-dependent inertio-capillary regime of Rayleigh’s
law. These five regimes can be written in any of the four system of units as d/`∗ = Ohβ(t/τ∗)α, with τ∗ = γ1τ and
`∗ = γ2`, where τ and ` can be chosen from one of the four systems. Table VI give the values of Ohβ for each regime
and choice of units. Note that the prefactors γ1 and γ2 take into account the dimensionless coefficients of the scaling
laws (δvc, δic etc) and will be discussed in section II E.

Schematic versions of the scaling regimes in vi, vc, ic and Oh units are given in SI-Fig. 1 to illustrate how the
coordinates of the intersection points can be expressed from the Ohnesorge number.
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Law vi units vc units ic units Oh units

d ∝
(
η
ρ

) 1
2
t
1
2 1 Oh Oh

1
2 1

d ∝ Γ
η
t Oh−2 1 Oh−1 1

d =
(

Γ
ρ

) 1
3
t
2
3 Oh− 2

3 Oh
2
3 1 1

d ∝
(

ΓD9

η

) 1
10
t

1
10 Oh− 1

5 1 Oh− 1
10 Oh− 9

5

d ∝
(

ΓD
ρ

) 1
4
t
1
2 Oh− 1

2 Oh
1
2 1 Oh− 1

2

TABLE VI: Ohnesorge-based prefactors for the five main scaling laws discussed in the article. For instance, d ∝ (Γ/η)t can be
written as d/`vi ∝ Oh−2(t/τvi), or d/`vc ∝ t/τvc, or d/`ic ∝ Oh−1(t/τic), or d/`o ∝ t/τo.

(a) (b)

(c) (d)

FIG. 1: Schematic plots of the main scaling laws discussed in the article, together with the coordinates of the their intersections,
expressed in terms of the Ohnesorge number Oh. In each panel, the inset provides a close-up on the intersection between the
2
3

regime, Rayleigh’s 1
2

regime and Tanner’s 1
10

regime. Note that the precision provided by current experiments does not

offer ways to confirm or inform the slight differences between the intersections of the 1
2

or 2
3

regime with Tanner’s law. For

instance, for the visco-capillary units the intersection of the 2
3

and 1
10

regime is given by t/τ∗vc = Oh− 20
17 = Oh− 5

4 Oh
5
68 and

d/`∗vc = Oh− 2
17 = Oh− 1

8 Oh
1

136 , which are here expressed from the coordinates of the intersection between the 1
2

and 1
10

regimes.

Since these intersections are meaningful if Oh < 1, the corrections factors Oh
5
68 and Oh

1
136 are always close to 1. The color of

each curve gives the value of Oh (see Fig. 5 of main article).
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C. Supplementary figures in vi, vc and ic units

In this section we give different versions of the visco-capillary, inertio-capillary and visco-inertial plots of the article
highlighting subsets of the data.

(a) (b)

He

FIG. 2: Supplementary visco-capillary plots. (a) Data from Fig. 2c of the article, replotted in visco-capillary units. The three

dashed lines follow Rayleigh’s regime d/`∗vc = Oh
1
2 (t/τ∗vc)

1
2 , for Oh = 10−1, 10−2 and 10−3. (b) Data from Fig. 2d of the article,

replotted in visco-capillary units. In addition to the the three dashed lines following Rayleigh’s regime, the dotted line follows

the inertio-capillary regime d/`∗vc = Oh
2
3 (t/τ∗vc)

1
2 , for Oh = 10−3. The data set labeled ‘He’ corresponds to superfluid Helium,

for which a viscosity is unavailable. We artificially set η = 10−6 Pa.s in order to represent the data on the visco-capillary plot.
If η ' 0, the actual abscissa on this set should be infinite. It is probably more reasonable to assume that an effective viscosity
would set in, due to a different dissipation mechanism [2]. The color of each curve gives the value of Oh (see Fig. 5 of the main
article).

(a) (b)

FIG. 3: Supplementary inertio-capillary plots. (a) All spreading, coalescence and pinching experiments reproduced in the
article exhibiting a 2

3
regime are replotted in inertio-capillary units (see Tables VII-IX for values of δic). (b) All pinching

experiments replotted in visco-capillary units. In addition to Rayleigh’s regime (dotted-dashed line) and to the inertio-capillary
regime (dotted line), the dashed lines follow the visco-capillary regime d/`∗ic = Oh−1(t/τ∗ic), for Oh = 10−1, 1, 101. The color
of each curve gives the value of Oh (see Fig. 5 of the main article).
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(a) (b)

(c)

FIG. 4: All data sets from Fig. 5 of the main article reproduced in visco-capillary, inertio-capillary and visco-inertial units. See
extended legend and animated figures for details. The color of each curve gives the value of Oh (see Fig. 5 of the main article).
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FIG. 5: Measurements of the values of the purely visco-capillary prefactors δvc as a function of the Ohnesorge number, for all
experiments reproduced in the article. (Left) The biggest symbols with the added black dots correspond to direct measurements
of δvc from fitting a linear regime present on the data. The medium-size symbols correspond to indirect measurements of δvc
from two other prefactors (see section II F). The smallest symbols correspond to indirect measurements from a single other
prefactor (least reliable). (Right) Distribution of the values of δvc, for direct measurements (dark gray) and all measurements
(light gray).

D. Dimensionless constants

All scaling regimes introduced in the article include dimensionless prefactors. For instance, the simple visco-capillary
regime is d = δvcΓt/η. The prefactor δvc is expected to be a ‘constant of order 1’, which more rigorously means that
the variations of δvc with d, t, η or Γ can be at most logarithmic. This assumption that can be verified experimentally.
For all experiments presenting a linear scaling d ∼ t, we computed the value of δvc that better fitted the data. The
values of δvc in all cases where the linear regime was present are given for spreading, coalescence and pinching in
Tables VII, VIII and IX. The value of δvc appears to be independent of the Ohnesorge number, as shown in SI-Fig. 5.
Only considering direct measurements the most frequent value (mode) is δvc ' 0.5 and the mean is δvc ' 0.9 (see Fig. 5
for full distribution). We will show in section II F how additional values of δvc can be inferred from the prefactors of
other scaling laws.

The values of δic, δTan and δRay obtained from experiments are shown in SI-Fig. 6. All values are indeed of order
1 and seem quite independent of the Ohnesorge number. When possible, the values of the measured prefactors are
given in Tables VII, VIII and IX.

E. Unit prefactors

In all figures of the article, the units of length and time take into account the dimensionless constants (δvc, δic etc)
included in the various scaling laws. For instance, in Fig. 5 giving the dynamics in Ohnesorge units, the axes are t/τ∗o
and d/`∗o, where τ∗o ≡ γ1τo and `∗o ≡ γ2`o. In all figures associated with the four systems of units, the values of γ1

and γ2 for a particular data set are identical. The values of γ1, γ2 are given for spreading, coalescence and pinching
data in Tables VII, VIII and IX and in Fig. 7. In this section we discuss how the values of γ1 and γ2 are computed.
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(a) (b) (c)

FIG. 6: Values of dimensionless constants δTan, δic and δRay, from direct fits of experimental data presenting the appropriate
scalings (big symbols with black dots), and from indirect measurements (smaller symbols; see section II F).

(a) (b)

FIG. 7: Values of the dimensionless prefactors γ1 and γ2 used for any of the four systems of units. The big data points with
black dots correspond to direct measurements from fitting two consecutive regimes. The smaller data points correspond to
values inferred from fitting a single regime.

Let us take as an example a case of dynamics abiding to the simple visco-capillary scaling:

d = δvc
Γ

η
t↔ d

`vi
= δvcOh−2 t

τvi
↔ d

`vc
= δvc

t

τvc
↔ d

`ic
= δvcOh−1 t

τic
↔ d

`o
= δvc

t

τo
(1)

The goal of the coefficients γ1 and γ2 is to factor in the value of δvc, such that the regime can be written as

d

`∗vi
= Oh−2 t

τ∗vi
↔ d

`vc∗
=

t

τ∗vc
↔ d

`∗ic
= Oh−1 t

τ∗ic
↔ d

`∗o
=

t

τ∗o
(2)

Regardless of the system of units, the constraint on γ1 and γ2 is the same:

δvcγ1

γ2
= 1 (3)

Let us now assume that the data set first follows the simple visco-capillary regime and then displays Rayleigh’s
regime. In that case, the second regime provides an additional constraint:

δRayγ
1
2
1

γ2
= 1 (4)

Solving the system made of Eq. 3 and Eq. 4 would lead to:

γ1 =
(δRay
δvc

)2

(5)

γ2 =
δ2
Ray

δvc
(6)
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For all experimental data sets presenting two consecutive regimes, we followed the procedure outlined in the example
above in order to obtain the values of γ1 and γ2. We encountered five cases summarized here:

- input: δvc and δTan → γ1 =
(δTan
δvc

) 10
9

and γ2 = δvcγ1 (7)

- input: δvc and δic → γ1 =
( δic
δvc

)3

and γ2 = δvcγ1 (8)

- input: δvc and δRay → γ1 =
(δRay
δvc

)2

and γ2 = δvcγ1 (9)

- input: δTan and δic → γ1 =
(δTan
δic

) 30
17

and γ2 = δicγ
2
3
1 (10)

- input: δTan and δRay → γ1 =
(δTan
δRay

) 5
2

and γ2 = δRayγ
1
2
1 (11)

(12)

In some experiments only a single regime is available, in which case we chose to set γ2 = 1 and use the prefactor
of the regime to obtain a value of γ1. For instance, for the spreading experiment labeled ‘Eddi2013 Fig6 water’, the
data only show Rayleigh’s regime, giving δRay = 1.2, and we set γ2 = 1 to get γ1 = 1/δ2

Ray ' 0.69. In all these cases
presenting a single regime, the values of γ1 and γ2 must be understood as quite approximate. In two cases we chose
slightly different values of γ2. In coalescence experiments by Yokota et al. the confinement between two plates leads
to a late spreading abiding to d/τvc ∝ (t/τvc)

1
4 , and the values of γ2 are chosen to comply with this regime. The

second example where we chose γ2 6= 1 concerns the Tanner regime studied by Cazabat et al.. In that case, the sole
constraint is:

γ1 =
( γ2

δTan

)10

→ ∆γ1

γ1
= 10

∆γ2

γ2
+ 10

∆δTan
δTan

(13)

In the right-hand side we express the relative uncertainty on γ1 based on the uncertainty on γ2 and δTan. Even if
we assume that the uncertainty on δTan obtained from fitting data is negligible, small variations of γ2 can lead to
substantial variations of γ1. For Cazabat’s data, choosing γ2 = 1 led to unreasonable values of γ1 so we took the
liberty of slightly tuning γ2 in order to recover values in accordance with the other data sets. This was done by
deriving the inferred value of δvc, as we shall explain now.
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Label Oh δvc δTan δic δRay γ1 γ2
Cazabat1986˙Fig1a˙0p78 1.97e-01 nan 1.43 nan nan 1.61 1.50
Cazabat1986˙Fig1a˙1p5 1.77e-01 nan 1.45 nan nan 1.40 1.50
Cazabat1986˙Fig1a˙2p9 1.59e-01 nan 1.45 nan nan 1.40 1.50
Cazabat1986˙Fig1a˙3p8 1.52e-01 nan 1.46 nan nan 1.31 1.50
Cazabat1986˙Fig1a˙4p7 1.46e-01 nan 1.49 nan nan 1.07 1.50
Cazabat1986˙Fig1a˙7p8 1.34e-01 nan 1.47 nan nan 1.22 1.50
Cazabat1986˙Fig1a˙14p4 1.21e-01 nan 1.61 nan nan 0.49 1.50
Cazabat1986˙Fig1b˙37p9 5.16e+00 nan 1.55 nan nan 0.72 1.50
Cazabat1986˙Fig1b˙5p8 7.06e+00 nan 1.4 nan nan 1.99 1.50
Cazabat1986˙Fig1b˙4p03 7.50e+00 nan 1.4 nan nan 1.99 1.50
Cazabat1986˙Fig1b˙1p35 9.00e+00 nan 1.42 nan nan 1.73 1.50
Cazabat1986˙Fig1b˙0p35 1.13e+01 nan 1.4 nan nan 1.99 1.50
Biance2004˙Fig3˙0p27 7.17e-03 nan nan nan 0.8 1.56 1.00
Biance2004˙Fig3˙0p7 4.45e-03 nan 1.24 nan 1.1 1.35 1.28
Biance2004˙Fig3˙1p2 3.40e-03 nan 1.62 nan 1.47 1.27 1.66
Eddi2013˙Fig4˙0p37 2.95e-01 nan 0.8 0.48 nan 2.46 0.88
Eddi2013˙Fig4˙0p5 2.53e-01 nan 0.9 0.5 nan 2.82 1.00
Eddi2013˙Fig4˙0p63 2.26e-01 nan 0.9 0.55 nan 2.38 0.98
Eddi2013˙Fig5a˙105deg 2.53e-01 nan nan 0.6 nan 2.15 1.00
Eddi2013˙Fig5b˙0 5.28e-03 nan nan nan 1.2 0.69 1.00
Eddi2013˙Fig5b˙115 5.28e-03 nan nan nan 1 1.00 1.00
Eddi2013˙Fig6˙water 5.28e-03 nan nan nan 1.2 0.69 1.00
Eddi2013˙Fig6˙11 5.71e-02 nan 0.8 0.9 nan 0.81 0.78
Eddi2013˙Fig6˙1120 5.61e+00 3.5 0.7 nan nan 0.17 0.59
Eddi2013˙Fig6˙220 1.11e+00 1.8 0.8 nan nan 0.41 0.73
Chen2014˙Fig3b˙60cP 2.31e-01 nan 1.05 nan 0.72 2.57 1.15
Chen2014˙Fig3b˙35p5cP 1.36e-01 nan 0.92 nan 0.72 1.85 0.98

TABLE VII: Summary of the values of the dimensionless prefactors for all spreading experiments reproduced in the article.
The content of this table is available in the supplementary file ‘DataSummary.csv’.
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Label Oh δvc δTan δic δRay γ1 γ2
Menchaca2001˙Fig9 4.08e-04 nan nan nan 1.4 0.51 1.00
Wu2004˙Fig4˙1p94 2.67e-03 nan nan nan 1.1 0.83 1.00
Yao2005˙100000cS˙5cm 1.47e+02 1.8 nan nan nan 0.56 1.00
Yao2005˙100000cS˙0p5cm 4.64e+02 1.6 nan nan nan 0.62 1.00
Yao2005˙10000cS˙0p5cm 4.64e+01 1.6 nan nan nan 0.62 1.00
Yao2005˙1000cS˙0p5cm 4.64e+00 1.62 nan nan nan 0.62 1.00
Thoroddsen2005˙Fig6 3.53e-03 nan nan nan 1.4 0.51 1.00
Thoroddsen2005b˙Fig4 8.08e-03 nan nan nan 1.27 0.62 1.00
Aarts2005˙Fig2˙100mPas 5.08e-01 0.55 nan nan nan 1.82 1.00
Aarts2005˙Fig2˙1Pas 5.08e+00 0.55 nan nan nan 1.82 1.00
Aarts2005˙Fig2˙500mPas 2.54e+00 0.5 nan nan nan 2.00 1.00
Aarts2005˙Fig2˙300mPas 1.52e+00 0.6 nan nan nan 1.67 1.00
Aarts2005˙Fig3˙5mPas 2.50e-02 nan nan 2.7 nan 0.23 1.00
Aarts2005˙Fig3˙20mPas 1.00e-01 0.9 nan nan 1.4 2.42 2.18
Aarts2005˙Fig3˙50mPas 2.50e-01 0.9 nan nan 0.7 0.60 0.54
Aarts2005˙Fig3˙1mPas 2.64e-03 nan nan nan 1.2 0.69 1.00
Aarts2008˙Fig9˙bubb17 1.42e+02 0.3 nan nan nan 3.33 1.00
Aarts2008˙Fig9˙drop17 5.50e+02 0.4 nan nan nan 2.50 1.00
Yokota2011˙Fig2˙289 1.31e+00 0.7 nan nan nan 1.33 0.93
Yokota2011˙Fig2˙888 3.92e+00 0.89 nan nan nan 0.98 0.87
Paulsen2011˙Fig2˙1p9 4.81e-03 0.4 nan nan 1.3 10.56 4.23
Paulsen2011˙Fig2˙11 2.79e-02 0.5 nan nan 1.2 5.76 2.88
Paulsen2011˙Fig2˙48 1.22e-01 0.75 nan nan 1.0 1.78 1.33
Paulsen2011˙Fig2˙230 5.82e-01 1 nan nan nan 1.00 1.00
Paulsen2014˙Fig1 3.46e-03 0.2 nan nan 1.1 30.25 6.05
Soto2018˙Fig5 7.21e-03 nan nan nan 1.5 0.44 1.00
Rahman2019˙Fig6˙6p65 6.54e+00 0.9 nan nan nan 1.11 1.00
Rahman2019˙Fig6˙1p84 1.84e+00 0.85 nan nan nan 1.18 1.00
Rahman2019˙Fig6˙0p146 1.45e-01 nan nan nan 1 1.00 1.00
Rahman2019˙Fig6˙0p00692 6.15e-03 nan nan nan 1.2 0.69 1.00

TABLE VIII: Summary of the values of the dimensionless prefactors for all coalescence experiments reproduced in the article.
The content of this table is available in the supplementary file ‘DataSummary.csv’.
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Label Oh δvc δTan δic δRay γ1 γ2
Chen1997˙Fig7 8.11e-02 nan nan 0.55 nan 2.45 1.00
McKinley2000˙Fig4 2.08e+00 0.074 nan nan nan 13.51 1.00
Chen2002˙Fig3 1.81e-03 nan nan 0.64 nan 1.95 1.00
Burton2004˙Fig5 3.30e-04 nan nan 0.22 nan 0.31 0.10
Burton2005˙0p9 1.88e-03 nan nan nan 0.7 2.04 1.00
Burton2005˙37p4 8.20e-02 0.6 nan nan 0.55 0.84 0.50
Burton2005˙1011 2.06e+00 0.5 nan nan nan 2.00 1.00
Burton2007˙Fig7 nan nan nan 0.95 nan 1.08 1.00
Keim2006˙Fig2˙4p1 1.84e-03 nan nan nan 0.78 1.64 1.00
Keim2006˙Fig2˙1p5 3.04e-03 nan nan nan 0.8 1.56 1.00
Bolanos2009˙Fig6˙water 5.76e-03 nan nan nan 0.85 1.38 1.00
Bolanos2009˙Fig7˙water 2.95e-03 nan nan nan 0.8 1.56 1.00
Bolanos2009˙Fig6˙O2 1.37e-01 nan nan 1 nan 1.00 1.00
Bolanos2009˙Fig7˙O7 3.99e-02 nan nan nan 0.8 1.56 1.00
Bolanos2009˙Fig7˙O8 7.89e-02 0.65 nan 1.36 nan 9.16 5.95
Bolanos2009˙Fig7˙O9 1.57e-01 0.6 nan 1.0 nan 4.63 2.78
Bolanos2009˙Fig8˙G1 8.57e-02 0.55 nan 1.15 nan 9.14 5.03
Bolanos2009˙Fig8˙G2 7.80e-01 0.5 nan nan nan 2.00 1.00
Bolanos2009˙Fig8˙G4 2.81e+00 0.5 nan nan nan 2.00 1.00
Bolanos2009˙Fig9˙G5 5.30e-02 nan nan 1.75 nan 0.43 1.00
Bolanos2009˙Fig9˙G6 4.42e-01 0.48 nan nan nan 2.08 1.00
Bolanos2009˙Fig6˙O1 6.91e-02 nan nan 1.1 nan 0.87 1.00
Bolanos2009˙Fig6˙O3 2.72e-01 0.45 nan 0.7 nan 3.76 1.69
Bolanos2009˙Fig9˙G8 1.81e+00 0.46 nan nan nan 2.17 1.00
Goldstein2010˙Fig5 1.57e-01 nan nan 0.8 nan 1.40 1.00

TABLE IX: Summary of the values of the dimensionless prefactors for all pinching experiments reproduced in the article. The
content of this table is available in the supplementary file ‘DataSummary.csv’.



16

F. Consistency relations

In all data we collected on spreading, coalescence and pinching, we never encountered a set presenting three
consecutive regimes. However, such dynamics are absolutely possible. For instance, a spreading with a low value of
Ohnesorge number could first follow the linear visco-capillary regime, then follow Rayleigh’s regime and finally reach
Tanner’s regime. The data from Biance et al. encompass the last two regimes ( 1

2 and 1
10 ) but lack enough time

resolution to describe the initial visco-capillary regime. If future experiments manage to resolve three consecutive
regimes, one could check consistency relationships between the different prefactors. For instance, in the case outlined
above, the three consecutive regimes would lead to the following constraints on γ1 and γ2:

γ2 = δvcγ1

γ2 = δRayγ
1
2
1

γ2 = δTanγ
1
10
1

→ δ9
Ray = δ4

vcδ
5
Tan (14)

The constraints impose that the three constant prefactors are not independent and must respect the equation on the
right-hand side. We have used such consistency equations to infer values of prefactors inaccessible in experiments.
For instance, from Biance’s data providing values for δRay and δTan, we computed the predicted values of δvc =

(δ9
Ray/δ

5
Tan)

1
4 . These inferred values are present as the two red dots in SI-Fig. 5, corresponding to ‘Biance2004 Fig3

0p7’ and ‘Biance2004 Fig3 1p2’.
In general, if values of γ1 and γ2 are provided, the values of the constant prefactors can be inferred using the

following equations:

δvc =
γ2

γ1
(15)

δTan =
γ2

γ
1
10
1

(16)

δic =
γ2

γ
2
3
1

(17)

δRay =
γ2

γ
1
2
1

(18)

(19)

These relations allow to infer values of the prefactors in all cases, even if a particular experiment is not expected to
display a given regime. For instance, for a coalescence experiment, Tanner’s regime is irrelevant, but a hypothetical
value of δTan can be computed anyway. All indirect measurements of prefactors in SI-Fig. 5 and 6 are obtained using
the equations given above.

III. CATEGORIES OF DIMENSIONLESS NUMBERS

The article aims at analyzing dynamics based on four dimensional parameters: three materials parameters (ρ, η and
Γ) and one geometric parameter D. We call these quantities ‘parameters’ because they are expected to be constant for
a particular experiment, in contrast to the variables d and t. These four dimensional parameters and the associated two
dimensional variables can combine to produce a variety of quantities without dimensions. According to dimensional
analysis, the dynamics can be fully characterized by 3 dimensionless numbers (6 quantities -3 dimensions) [3]. In the
article we favored descriptions based on four different choices of dimensionless times and lengths in conjunction with
the Ohnesorge number. In this section, we entertain different approaches and try to categorize the different kinds of
dimensionless numbers in the hope to facilitate comparison with different viewpoints.

In the article, we encounter a few kinds of quantities without dimensions, which we shall summarize here and
comment thereafter.

- Scaling exponents: any scaling regime d = Ktα is associated with a dimensionless exponent α.

- Simple dynamic dimensionless numbers: Re, Ca, We.

- Variable geometric ratio: Λ.

- Dimensionless constants: δvi, δvc, δic, δTan, δRay.
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- Ohnesorge and Laplace numbers: Oh, La.

- Dimensionless lengths: d/`vi, d/`vc, d/`ic, d/`o.

- Dimensionless times: t/τvi, d/τvc, d/τic, d/τo.

- Dimensionless unit prefactors: γ1, γ2.

A. Scaling exponents

In the article we discussed five main scaling laws, associated with the exponents 1 (vc), 1
2 (vi and Rayleigh), 2

3

(ic) and 1
10 (Tanner). The values of these exponents are connected to the dimensions of the components of the

prefactor K in d = Ktα. For instance, α = 2
3 for the inertio-capillary regime because [K] = ([Γ]/[ρ])

1
3 = L.T − 2

3 .

Since physical quantities tend to have dimensions Ma.Lb.T c, with a, b and c small integers, then scaling exponents
with a mechanical underpinning can only be rational numbers built from ratios of small integers. However, if one
adds logarithmic corrections as in d ∝ Ktα log(d/D), then the apparent scaling exponent may deviate from simple
fractions. In that case, one can define the apparent exponent as the logarithmic derivative [4]:

α∗ ≡
∂ log d

∂ log t
(20)

In theory one may derive the evolution of the apparent exponent α∗(t) for all dynamics reported in the article. In
practice, the use of a derivative can introduce a substantial source of error. In SI-Fig. 8a we give the computed
apparent exponent for an example of spreading from Eddi et al. [4], obtained with different methods of derivation.

B. Simple dynamic dimensionless numbers

Although without dimensions, the scaling exponents are usually not considered as dimensionless numbers per
say. Traditional dimensionless numbers are understood as ratios of dimensional quantities. What we call a ‘simple
dimensionless number’ is a ratio built from two material parameters with dimensions of the form M.Lb.T c, and a
kinematic quantity with dimensions Lb′ .T c′ . Following standard definitions, the article introduced three such simple
dimensionless numbers:

Re ≡ ρdv

η
=
dv

ν
(21)

Ca ≡ ηv

Γ
=
v

c
(22)

We ≡ ρdv2

Γ
=
dv2

κ
(23)

These definitions are rooted in steady hydrodynamics, where d and v are usually understood as control parameters
imposed by the experimenter. Here d and v are the variable extent and speed of the spreading/coalescing/pinching
object. Hence, the dimensionless numbers Re, Ca and We are dynamical, in the sense that their values can change
over the course of an experiment. Computation of the values of the simple dimensionless numbers is contingent on
deriving the leading edge speed:

v ≡ ∂d

∂t
= α∗

d

t
(24)

In SI-Fig. 8b we give the edge speed computed from simple differences without any additional processing, the ratio d/t
and the curve d(t) for the example ‘Eddi2013 Fig6 220’ [4]. From this perspective, the apparent scaling exponent can
be defined as a ratio of two speeds: α∗ = vt/d. The result of this definition is given as the yellow curve in SI-Fig. 8a.

For a given data set d(t), the values of Re, Ca and We can be computed at any time after deriving the speed v, as

shown on an example in SI-Fig. 8. If the Reynolds number is constant it means that d ∼ t 1
2 . If the Capillary number

is constant it means that d ∼ t. If the Weber number is constant it means that d ∼ t 2
3 . In this example, the dynamics

first seem to display a constant Weber number, and indeed α∗ ' 2
3 , as show in SI-Fig. 8a. The value of the constant

will be connected to the dimensionless numbers δic in section III D.



18

FIG. 8: Alternative dimensionless representations for the data set ‘Eddi2013 Fig6 220’ [4]. (a) Apparent scaling exponent α∗
obtained using different methods: difference between adjacent points on logarithmic scale (open circles), logarithmic deriva-
tive after cubic interpolations of the data points obtained with the method interpolate.splprep on python with two different
smoothing parameters (red and green), by computing the ratio vt/d (yellow), and as provided in the original article [4] (blue
squares). (b) Comparison between the speed v ≡ ∂d/∂t (red dots) and the speed d/t (dark red line). The black curve is d(t).

(c) Comparison between the traditional dimensionless numbers Re, Ca and We (open circles), and the alternate numbers R̃e,

C̃a and W̃e. (d) Evolution of the values of the dimensionless numbers based directly on the form of the scaling laws. The
numbers Re, Ca and We are identical for t = τo. The constants δic and δTan identify plateaus in the evolution of We and

(Λ9Ca)
1
10 .

The derivation of the data d(t) involved in the computation of the speed v usually introduces a source of error. To
circumvent this issue, one may define alternate simple dimensionless numbers based on d and t only:

R̃e ≡ ρd2

ηt
=

Re

α∗
(25)

C̃a ≡ ηd

Γt
=

Ca

α∗
(26)

W̃e ≡ ρd3

Γt2
=

We

α2
∗

(27)

The values of these alternate numbers are given in SI-Fig. 8c.
As mentioned in the article, dimensionless numbers are defined modulo an overall power. Usually, this power is

chosen such that the material parameters appearing in the number have integer exponents. This historical habit may
not be best suited to our purpose. In the context of a comparative study of multiple scaling regimes, it may be more
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judicious to define alternate numbers based directly on the form of the scaling laws:

Re ≡ d
( ρ
ηt

) 1
2

= R̃e
1
2 =

(Re

α∗

) 1
2

(28)

Ca ≡ d η
Γt

= C̃a =
Ca

α∗
(29)

We ≡ d
( ρ

Γt2

) 1
3

= W̃e
1
3 =

We
1
3

α
2
3
∗

(30)

The values of these alternate numbers are given in SI-Fig. 8d.
The three simple dimensionless numbers are related by the ‘we care’ identity, which can be expressed in a few ways:

We = CaRe (31)

W̃e = C̃aR̃e (32)

We3 = CaRe2 (33)

κ = cν (34)

C. Variable geometric ratio

In addition to Re, Ca and We, we also introduced a dynamic geometric size ratio:

Λ ≡ d

D
(35)

For a given experiment, the value of this number evolves as the spreading, coalescence or pinching proceeds. The size
ratio can be connected to a number of shape descriptors. Taken spreading as an example, the size ratio can be related
to the apparent contact angle or the curvature. The actual relationship between these geometric measures and the
size ratio can vary depending on context, but a few examples can help as an illustration.

If the spreading geometry follows a pancake with cylindrical symmetry, then conservation of volume imposes that
D3 ∝ hd2, where h is the height of the pancake. The size ratio of the pancake is then h/d ∝ Λ−3.

If the spreading follows a spherical cap geometry, then the conservation of volume is expressed as D3 ∝ θd3, where
θ ∝ Λ−3 is the apparent contact angle.

D. Dimensionless constants

In the article, we introduced five dimensionless constants: δvi, δvc, δic, δTan and δRay. Let us first discuss the three
constants based on simple scaling laws associated with Re, Ca and We. The constants δvi, δvc, δic can be understood
as special values of the dynamical numbers Re, Ca and We. How these special values are defined is somewhat arbitrary,
but usually one seeks time intervals where the dynamical numbers are constant and ‘close to 1’. Using the traditional
or alternate simple dynamical numbers, the three simple scaling laws can be expressed as:

d = δvi

(η
ρ

) 1
2

t
1
2 ↔ δvi = Re = R̃e

1
2 =

(Re

α∗

) 1
2

(36)

d = δvc
Γ

η
t↔ δvc = Ca = C̃a =

Ca

α∗
(37)

d = δic

(Γ

ρ

) 1
3

t
2
3 ↔ δic = We = W̃e

1
3 =

We
1
3

α
2
3
∗

(38)

The numbers δvi, δvc and δic are understood as constant, which are meant to identify the values of plateaus exhibited
by the time-series Re(t),Ca(t) and We(t). Thus, in the following we will use the symbols Re0,Ca0 and We0 to
respectively stand for δvi, δvc and δic. For instance, in SI-Fig. 8d, we can identify a roughly constant value of We for
10−5 s . t . 2 10−3 s, giving δic = We0 ' 0.28. Then, as stated in the article, the special value of the traditional
Weber number is We0 = We30α

2
0, with α0 = 2

3 .
In contrast to the three simple scaling laws, the two-size dependent regimes discussed in the article cannot be

derived by simple dimensional analysis. In simple scaling laws, the length d depends on three quantities, the variable
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t and a choice of two material parameters. In contrast, the size-dependent regimes also depend on D, which does not
lead to a unique possible scaling. When expressed in terms of dimensionless numbers, the size-dependent regimes are
connected to products between simple dynamical numbers and the size ratio:

d = δTan

(Γ

η

) 1
10

D
9
10 t

1
10 ↔ δTan = (Λ9Ca)

1
10 = (Λ9C̃a)

1
10 =

(
Λ9 Ca

α∗

) 1
10

(39)

d = δRay

(ΓD

ρ

) 1
4

t
1
2 ↔ δRay = (ΛWe3)

1
4 = (ΛW̃e)

1
4 =

(
Λ

We

α2
∗

) 1
4

(40)

The curves corresponding to (Λ9C̃a)
1
10 and (ΛW̃e)

1
4 are given in SI-Fig. 8d, on which we indicate the value of δTan

corresponding to a plateau of (Λ9C̃a)
1
10 . Note that this plateau is rather limited due to the effect of gravity, which

brings α closer to 1
8 rather than 1

10 [5].
In practice, the values of the dimensionless constants used in the article were obtained by directly fitting the data

d(t) to a particular exponent in a prescribe time range, and are most often equal to the values provided in the original
papers. See section III I for a discussion on a fitting procedure letting the exponent free to adopt values beyond the
fives regimes discussed in the article.

E. Ohnesorge and Laplace numbers

In contrast to the three simple dimensionless numbers, the Ohnesorge number depends on three rather than two
material parameters. In addition, like the size ratio, the Ohnesorge number depends on the extrinsic size D. As stated
in the article, the Ohnesorge number can be expressed from the simple dimensionless numbers as:

Oh2 ≡ η2

ΓρD
=

Ca

Re
Λ =

We

Re2 Λ =
Ca2

We
Λ (41)

The different decompositions are built in such a way that the product is independent of the variables d and t. Thus,
the Ohnesorge number is a constant in each experiment.

The Ohnesorge number can also be written in terms of the kinematic ratios associated with the material parameters:

Oh =
ν

(κD)
1
2

=
( ν

cD

) 1
2

=
κ

1
2

cD
1
2

(42)

where we recall that ν ≡ η/ρ, κ ≡ Γ/ρ and c ≡ Γ/η.
The Laplace number La = Oh−2 gives an alternative definition of the dimensionless combination present in the

Ohnesorge number. Again, dimensionless numbers are defined modulo an overall power.

F. Dimensionless lengths

Of the four systems of units discussed in the article, three share the same dimensionless length, which is none other
than the size ratio:

d

`vi
=

d

`vc
=

d

`ic
=

d

D
= Λ (43)

In contrast, the dimensionless length of the Ohnesorge units compares the variable d to the intrinsic Ohnesorge length
`o, which can be expressed from D by using the Ohnesorge number:

d

`o
=

d

D

D

`o
= ΛLa =

Λ

Oh2 =
Re

Ca
=

Re2

We
=

We

Ca2 (44)

G. Dimensionless times

In the article, we used four different time scales related by the Ohnesorge number:

τvi
×Oh−−−→ τic

×Oh−−−→ τvc
×Oh2

−−−−→ τo (45)

ρD2

η

×Oh−−−→
(ρD3

Γ

) 1
2 ×Oh−−−→ ηD

Γ

×Oh2

−−−−→ η3

Γ2ρ
(46)
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Using these time scales in conjunction with the variable t, we built four dimensionless times that can be expressed
from the simple dimensionless numbers. The three size-dependent time scales can be obtained from the associated
simple dimensionless numbers as follows:

t

τvi
=
( Λ

Re

)2

=
Λ2

R̃e
= α∗

Λ2

Re
(47)

t

τic
=
( Λ

We

) 3
2

=
Λ

3
2

˜
We

1
2

= α∗
Λ

3
2

We
1
2

(48)

t

τvc
=

Λ

Ca
=

Λ

C̃a
= α∗

Λ

Ca
(49)

Note that the ratios Λ
Re , Λ

We and Λ
Ca effectively produce inverse dimensionless numbers where the varying length scale

d has been replaced by the constant D, such that the only variability in the ratios come from t.
The fourth dimensionless time can be expressed in a few equivalent ways illustrating different properties:

t

τo
≡ tΓ2ρ

η3
=

Λ

C̃aOh2
=

1

Ca

d

`o
= α∗

Re

Ca2 = α∗
We

Ca3 = α∗
Re2

WeCa
(50)

In Ohnesorge’s units the alternate dimensionless numbers can be understood as the dimensionless equivalents of the
kinematic quantities c, ν

1
2 and κ

1
3 , which are now understood as variable rather than constant:

d

`o
= Ca(t)

t

τo
= Re(t)

( t
τo

) 1
2

= We(t)
( t
τo

) 2
3

(51)

This polymorphism of the Ohnesorge units is exhibited quite visually by the intersections of the three curves Re(t),
Ca(t) and We(t), marking the instant with t = τo, as shown on an example in SI-Fig. 8d.

H. Dimensionless unit prefactors

In sections II E and II F we described how the actual units used in the article include prefactors taking into account
the dimensionless constants. For instance, in the case of dynamics decomposed into an early visco-capillary regime
and a late inertio-capillary regime, then γ1 = (δic/δvc)

3 and γ2 = δvc(δic/δvc)
3. Putting everything together and

choosing the Ohnesorge units as an example, one has:

d

`∗o
= C t

τ∗o
= R

( t

τ∗o

) 1
2

=W
( t

τ∗o

) 2
3

(52)

where we have defined renormalized versions of the simple dimensionless numbers:

C ≡ Ca(t)

Ca0
(53)

R ≡ Re(t)

Re0
(54)

W ≡ We(t)

We0
(55)

With these new definitions, we have W3 = CR2.
Overall, the dimensionless plots in the four systems of units provided in the article can be understood as represen-

tations of choices of different ratios of the simple dimensionless numbers normalized by their constant values. This
mapping from dimensionless time and space to simple dimensionless numbers can be illustrated in Ohnesorge units,
where the various sectors of the plot are associated with different inequalities between the dimensionless numbers, as
illustrate in SI-Fig. 9.

I. Quasi-properties and generalized dynamical number

So far we have assumed that the five scaling laws described in the article provided a good description of most of
the regimes encountered in the analyzed experiments on spreading, coalescence and pinching. Indeed, the various
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FIG. 9: The different dynamical domains in Ohnesorge units. Each colored domain corresponds to a different inequality between
the three simple dimensionless numbers and the threshold 1. Note that because of the ‘we care’ relationship, i.e. W3 = CR2,
the only two possible inequalities between the three simple dimensionless numbers are C < W < R (if t > τo) or C > W > R
(if t < τo). The different domains are then defined by the placement of 1 within these inequalities.

representations of the data in the four systems of units largely supported this hypothesis. Although close to the
reference exponents provided by the five scalings, the actual values may be slightly different. For instance, data may
display an exponent α ' 0.45 instead of α = 1

2 for Rayleigh’s law. The dimensionless constants δvc, δic etc. provided
in Tables VII-IX were all obtained by assuming one of the standard exponents and fitting the experimental data with
the associated regime. Instead, we can relax the constraint on the value of the exponent and fit the data to obtain
both the exponent and the prefactor.

If d = Ktα, dimensional analysis imposes that [K] = L.T −α. We know that if α is a rational number constructed
from small integers, then the kinematic coefficient K can be connected to ratios of traditional material parameters,
like Γ/η, (Γ/ρ)

1
3 etc. If the value of α cannot be expressed as a simple fraction, one may say that K is a ‘quasi-

property’ [6]. In this case, the different systems of units can still be used to estimate an expected value of K. For
instance, if one assumes than a spreading regime fitted by d = Ktα can be well represented by the Ohnesorge units,
then the expected value of K is Ko = `o.τ

−α
o , irrespective of the value of α, i.e. even if it is beyond 1, 1

2 or 2
3 . For any

particular system of units with length ` and time τ , one can define a generalized dynamical dimensionless number:

N(α) ≡ dt−α

`τ−α
(56)

For instance, for the Ohnesorge units we have:

No(α) ≡ dΓ1−2αρ1−α

η2−3αtα
=


C if α = 1

W if α = 2
3

R if α = 1
2

(57)

The values of No and α obtained by fitting both the prefactor and the exponent on all the regimes of the data
shown in the article are given in SI-Fig. 10. Regimes exhibiting a value of No close to 1 are in good agreement with
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(a) (b)

(c) (d)

FIG. 10: Spreading exponent and generalized dynamical dimensionless numbers in Ohnesorge, visco-inertial, visco-capillary
and inertio-capillary units. Agreement with a particular system of units corresponds N ∝ 1 (vertical line).

the Ohnesorge units. In contrast, dynamics associated with very small or large values of No indicate departure from
the Ohnesorge units. This is particularly true when the extrinsic size D starts to have an impact, as in the Tanner
or Rayleigh regimes. In SI-Fig. 10 we also provide plots for the values of Nvi, Nic and Nvc, by using the respective
visco-inertial, inertio-capillary and visco-capillary units to define the N.



24

IV. OPEN QUESTIONS

In this section, we highlight some of the issues raised in the main article by providing additional plots focusing on
sub-sets of the experimental data.

A. Size-dependence of the inertio-capillary regimes for Oh< 1

FIG. 11: Spreading, coalescence and pinching dynamics for d/`∗o > 1 and t/τ∗o > 1. The highlighted spreading curves have
Oh = 2.31 10−1 (‘Chen2014 Fig3b 60cP’), Oh = 2.95 10−1 (‘Eddi2013 Fig4 0p37’), Oh = 5.71 10−2 (‘Eddi2013 Fig6 11’) and
Oh = 5.71 10−2 (‘Biance2004 Fig3 1p2’).

In SI-Fig. 11 we provide a close-up on the region d/`∗o > 1 and t/τ∗o > 1. In this sector of the operating space, we
have C < W < R. Data from spreading, coalescence and pinching exhibit two possible trends. Starting at d/`∗o = 1
and t/τ∗o = 1, some dynamics directly follow the inertio-capillary regime (α = 2

3 , dotted line), while other remain on

the visco-capillary regime (α = 1, dashed line), until d/`∗o = t/τ∗o = Oh−1, after which they follow Rayleigh’s regime
(α = 1

2 ), reaching d/`∗o = D when crossing the dotted line. To put it bluntly: why do some dynamics take a short cut

via the 2
3 regime, while other take the long route through Rayleigh’s regime? Let us take spreading as an example.

Highlighted in SI-Fig. 11 are four spreading curves with Oh = 2.31 10−1 (‘Chen2014 Fig3b 60cP’), Oh = 2.95 10−1

(‘Eddi2013 Fig4 0p37’), Oh = 5.71 10−2 (‘Eddi2013 Fig6 11’) and Oh = 5.71 10−2 (‘Biance2004 Fig3 1p2’). The
data from Eddi et al. abide to the 2

3 scaling, while the data from Chen et al. and Biance et al. follow Rayleigh’s
regime. Some criterion beyond the value of the Ohnesorge number seems to dictate the course of events. Note that
in experiments by Chen et al., the substrate was partially wetting (θ = 63◦).
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B. Inertio-capillary regime for Oh> 1

The existence of a 2
3 regime of spreading for Oh< 1 as exhibited above is not too surprising and has been discussed in

the literature []. While compiling the data reproduced in the article, we also noticed that some spreading experiments
with Oh& 1 could also be interpreted as following a 2

3 regime extending in the region d/`∗o < 1 and t/τ∗o < 1, where
C > 1 & W > R. These experiments are labeled ‘Eddi2013 Fig6 220’ and ‘Eddi2013 Fig6 1120’. In the main article
and in the Table VII we chose to interpret these data from a visco-capillary perspective in accordance with the original
paper [4]. That is to say that the spreading was interpreted as displaying a visco-capillary regime with an intermediate
regime dominated by a logarithmic correction. In this interpretation, the first few data points are used to obtain a
value of δvc, and the associated unit prefactors γ1 and γ2 computed with the addition of the late spreading prefactor
δTan produce the curves displayed in SI-Fig. 12a. The values of δvc derived in this way are sensibly larger than the
average, as can be seen in SI-Fig. 5. A different way to interpret these two data sets is to consider than the early
regime abides to a 2

3 regime, and to build the unit prefactors from δic and δTan. The example of ‘Eddi2013 Fig6
220’ was treated in details in SI-Fig. 8, where it was quite convincing than for t/τ∗o < 1 the dynamics displayed a
constant Weber number, and so followed the 2

3 regime. In SI-Fig. 12b we give the result of interpreting the data sets
‘Eddi2013 Fig6 220’ and ‘Eddi2013 Fig6 1120’ in this alternate way. From this perspective, the inferred values of δic
are consistent but seem to decrease with increasing Ohnesorge number. We expect that investigating the dynamics
at yet earlier times would help deciphering the respective roles of inertia and viscosity for the onset of spreading.
More broadly for values of the Ohnesorge number close to 1, we can expect a broader diversity of dynamics than
reflected in the main paper. For instance, recent data on pinching near Oh ∝ 1 suggest a variety of rich behaviors [7].
Unfortunately, the information on the values of the material parameters used in the experiments of this reference was
too scarce to allow us to reproduce the plots.

(a) (b)

FIG. 12: Two ways to interpret the data sets ‘Eddi2013 Fig6 220’ (Oh = 1.1) and ‘Eddi2013 Fig6 1120’ (Oh = 5.6). (a)
Visco-capillary interpretation: the first data points are interpreted as belonging to a visco-capillary regime, followed by a
long intermediate range dominated by a logarithmic correction, finally reaching a Tanner regime in the late spreading. The

fitted values of δvc and δTan are used to compute the unit prefactors γ1 = (δTan/δvc)
10
9 and γ2 = δvcγ1. (b) Inertio-capillary

interpretation: the early spreading is interpreted as an inertio-capillary regime followed by a Tanner regime in the late spreading.

The fitted values of δic and δTan are used to compute the unit prefactors γ1 = (δTan/δic)
30
17 and γ2 = δicγ

2
3
1 .

V. ANIMATED FIGURES

The files ‘Fig3 VC.gif’, ‘Fig3 IC.gif’, ‘Fig4 VI.gif’ and ‘Fig5 Oh.gif’ give animated versions of Fig. 3, 4 and 5 of the
main article, showing how every data set is included in the graph. The images used to create the animated files are
given in the zip archives of the same names. Note that the values of η, ρ, Γ and D given on each image have standard
units, i.e. Pa.s for viscosity, kg/m3 for density, N/m for surface tension and m for the extrinsic size.

The file ‘TowardOhUnits.gif’ gives an animated figure built from the succession of three images with different units
for the data sets shown in Fig. 5 of the main article: standard units (d in meters and t in seconds), ‘bare’ Ohnesorge
units d/`o and t/τo, and normalized Ohnesorge units d/`∗o and t/τ∗o .
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VI. DETAILS ON EXPERIMENTAL DATA

In this section we provide additional details on the experiments reproduced in the article. The readers are referred
to the original publications for the full context. The horizontal lines on some of the plots give the value of D, when
it is within the range of the data. The vertical plain, dashed, dotted and dotted-dashed lines respectively give the
values of τ∗o , τ∗vc, τ

∗
ic and τ∗vi, when within the range of the data.

Cazabat1986 Fig1a 0p78 Cazabat1986 Fig1a 1p5

Silicone oil in ambient air, on smooth hydrophilic glass.

Effect of gravity for d & (Γ/ρg)
1
2 .

Silicone oil in ambient air, on smooth hydrophilic glass.

Effect of gravity for d & (Γ/ρg)
1
2 .

Cazabat1986 Fig1a 2p9 Cazabat1986 Fig1a 3p8

Silicone oil in ambient air, on smooth hydrophilic glass.

Effect of gravity for d & (Γ/ρg)
1
2 .

Silicone oil in ambient air, on smooth hydrophilic glass.

Effect of gravity for d & (Γ/ρg)
1
2 .
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Cazabat1986 Fig1a 4p7 Cazabat1986 Fig1a 7p8

Silicone oil in ambient air, on smooth hydrophilic glass.

Effect of gravity for d & (Γ/ρg)
1
2 .

Silicone oil in ambient air, on smooth hydrophilic glass.

Effect of gravity for d & (Γ/ρg)
1
2 .

Cazabat1986 Fig1a 14p4 Cazabat1986 Fig1b 37p9

Silicone oil in ambient air, on smooth hydrophilic glass.

Effect of gravity for d & (Γ/ρg)
1
2 .

Silicone oil in ambient air, on smooth hydrophilic glass.

Effect of gravity for d & (Γ/ρg)
1
2 .

Cazabat1986 Fig1b 5p8 Cazabat1986 Fig1b 4p03

Silicone oil in ambient air, on smooth hydrophilic glass.

Effect of gravity for d & (Γ/ρg)
1
2 .

Silicone oil in ambient air, on smooth hydrophilic glass.

Effect of gravity for d & (Γ/ρg)
1
2 .
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Cazabat1986 Fig1b 1p35 Cazabat1986 Fig1b 0p35

Silicone oil in ambient air, on smooth hydrophilic glass.

Effect of gravity for d & (Γ/ρg)
1
2 .

Silicone oil in ambient air, on smooth hydrophilic glass.

Effect of gravity for d & (Γ/ρg)
1
2 .

Biance2004 Fig3 0p27 Biance2004 Fig3 0p7

Water in ambient air, on inverted hydrophilic glass Water in ambient air, on inverted hydrophilic glass

Biance2004 Fig3 1p2 Eddi2013 Fig4 0p37

Water in ambient air, on inverted hydrophilic glass Water-glycerol mixture in ambient air, on hydrophilic glass
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Eddi2013 Fig4 0p5 Eddi2013 Fig4 0p63

Water-glycerol mixture in ambient air, on hydrophilic glass Water-glycerol mixture in ambient air, on hydrophilic glass

Eddi2013 Fig5a 105deg Eddi2013 Fig5b 0

Water-glycerol mixture in ambient air,
on hydrophobic fluoropolymer-coated glass.

Water in ambient air, on hydrophilic glass.

Eddi2013 Fig5b 115 Eddi2013 Fig6 water

Water in ambient air, on hydrophobic Teflon-coated glass. Water in ambient air, on hydrophilic glass.
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Eddi2013 Fig6 11 Eddi2013 Fig6 1120

Water-glycerol mixture in ambient air, on hydrophilic glass Water-glycerol mixture in ambient air, on hydrophilic glass

Eddi2013 Fig6 220 Chen2014 Fig3b 60cP

Water-glycerol mixture in ambient air, on hydrophilic glass Water-glycerol mixture in ambient air, on partial wetting sub-
strate (θ = 63◦).

Chen2014 Fig3b 35p5cP Menchaca2001 Fig9

Water-glycerol mixture in ambient air, on partial wetting sub-
strate (θ = 63◦).

Mercury in ambient air.
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Wu2004 Fig4 1p94 Yao2005 100000cS 5cm

Water in ambient air. Siliconee oil in density-matched water-alcohol mixture.

Yao2005 100000cS 0p5cm Yao2005 10000cS 0p5cm

Siliconee oil in density-matched water-alcohol mixture. Siliconee oil in density-matched water-alcohol mixture.

Yao2005 1000cS 0p5cm Thoroddsen2005 Fig6

Siliconee oil in density-matched water-alcohol mixture. Water in ambient air.
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Thoroddsen2005b Fig4 Aarts2005 Fig2 100mPas

Air bubbles in ethyl alcohol.
Density and viscosity are that of the outer fluid.

Silicone oil in ambient air.

Aarts2005 Fig2 1Pas Aarts2005 Fig2 500mPas

Silicone oil in ambient air. Silicone oil in ambient air.

Aarts2005 Fig2 300mPas Aarts2005 Fig3 5mPas

Silicone oil in ambient air. Silicone oil in ambient air.
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Aarts2005 Fig3 20mPas Aarts2005 Fig3 50mPas

Silicone oil in ambient air. Silicone oil in ambient air.

Aarts2005 Fig3 1mPas Aarts2008 Fig9 bubb17

Water in ambient air. PMMA Poly(styrene) in Decalin, gas phase.
The density used is that of the PMMA colloid.

Aarts2008 Fig9 drop17 Yokota2011 Fig2 289

PMMA Poly(styrene) in Decalin, liquid phase.
The density used is that of the PMMA colloid.

Water-glycerol mixture in PDMS oil.
A precise value of density was not available.

In a Hele-Shaw cell D = (RH)
1
2 , where R and H are respectively

the drop radius and the cell thickness.

Long-time behavior follows d/`vc ∝ (t/τvc)
1
4 .



34

Yokota2011 Fig2 888 Paulsen2011 Fig2 1p9

Water-glycerol mixture in PDMS oil.
A precise value of density was not available.

In a Hele-Shaw cell D = (RH)
1
2 , where R and H are respectively

the drop radius and the cell thickness.

Long-time behavior follows d/`vc ∝ (t/τvc)
1
4 .

Glycerol-water-NaCl mixture in ambient air.

Paulsen2011 Fig2 11 Paulsen2011 Fig2 48

Glycerol-water-NaCl mixture in ambient air. Glycerol-water-NaCl mixture in ambient air.

Paulsen2011 Fig2 230 Paulsen2014 Fig1

Glycerol-water-NaCl mixture in ambient air. Salt water in silicone oil.
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Soto2018 Fig5 Rahman2019 Fig6 6p65

CO2 bubble in water.
Density and viscosity are that of the outer fluid.

Water-glycerol mixture in ambient air.

Rahman2019 Fig6 1p84 Rahman2019 Fig6 0p146

Water-glycerol mixture in ambient air. Water-glycerol mixture in ambient air.

Rahman2019 Fig6 0p00692 Chen1997 Fig7

Water-glycerol mixture in ambient air. Catenoid soap film in ambient air.
Density is that of air, viscosity is that of the soap film.



36

McKinley2000 Fig4 Chen2002 Fig3

Glycerol in ambient air. Water in ambient air.

Burton2004 Fig5 Burton2005 0p9

Mercury in ambient air. Air bubble in water.
Density and viscosity are that of the outer fluid.

Burton2005 37p4 Burton2005 1011

Air bubble in water-glycerol mixture.
Density and viscosity are that of the outer fluid.

Air bubble in water-glycerol mixture.
Density and viscosity are that of the outer fluid.
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Burton2007 Fig7 Keim2006 Fig2 4p1

Superfluid 4He at temperature T=1.34K.
No viscosity is available. The artificial value η = 10−6 Pa.s is
used in SI-Fig. 2b.

Air bubble in water.
Density and viscosity are that of the outer fluid.

Keim2006 Fig2 1p5 Bolanos2009 Fig6 water

Air bubble in water.
Density and viscosity are that of the outer fluid.

Air bubble in water.
Density and viscosity are that of the outer fluid.

Bolanos2009 Fig7 water Bolanos2009 Fig6 O2

Air bubble in water.
Density and viscosity are that of the outer fluid.

Air bubble in silicone oil.
Density and viscosity are that of the outer fluid.
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Bolanos2009 Fig7 O7 Bolanos2009 Fig7 O8

Air bubble in silicone oil.
Density and viscosity are that of the outer fluid.

Air bubble in silicone oil.
Density and viscosity are that of the outer fluid.

Bolanos2009 Fig7 O9 Bolanos2009 Fig8 G1

Air bubble in silicone oil.
Density and viscosity are that of the outer fluid.

Air bubble in water-glycerol mixture.
Density and viscosity are that of the outer fluid.

Bolanos2009 Fig8 G2 Bolanos2009 Fig8 G4

Air bubble in water-glycerol mixture.
Density and viscosity are that of the outer fluid.

Air bubble in water-glycerol mixture.
Density and viscosity are that of the outer fluid.
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Bolanos2009 Fig9 G5 Bolanos2009 Fig9 G6

Air bubble in water-glycerol mixture.
Density and viscosity are that of the outer fluid.

Air bubble in water-glycerol mixture.
Density and viscosity are that of the outer fluid.

Bolanos2009 Fig6 O1 Bolanos2009 Fig6 O3

Air bubble in water-glycerol mixture.
Density and viscosity are that of the outer fluid.

Air bubble in water-glycerol mixture.
Density and viscosity are that of the outer fluid.

Bolanos2009 Fig9 G8 Goldstein2010 Fig5

Air bubble in water-glycerol mixture.
Density and viscosity are that of the outer fluid.

Soap film on Mobius strip.
Values of material parameters estimated since not provided.
Density is that of air, viscosity is that of soap film.
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