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1. Complete Derivation in Sec. 2.2 of the Main Text 

Here we follow the notation and numbering of equations in Sec. 2.2 of the main text to 

complete our derivation. From 
x yLx Ly   = +a e e  and 

( ) ( )x yL x y L x y     = −   +   + a e e , we obtain 

 ( )x x y y
L

     

  =  + − 
 

e a a , (S1) 

 ( )y x y x
L

     

  = − +  + 
 

e a a . (S2) 

We also obtain with the law of cosine ( ), , ,x x x x m xx m m a    
 = =  + b a b a , and 

, ,x m xy x m a

  = − − = −   ; substituting them into Eqs. (S1) and (S2) then gives 
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x x

x

m x
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La

   



+
=

a a
e , (S3) 
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( ) ( ), , , ,

,

x x x x

y

m x

m m m m

La

     



− +  +  +
=



a a
e . (S4) 

Substituting Eqs. (S3) and (S4) into Eq. (11) gives 

( ) ( ), , , , , ,

,

sin sin cos sin sin cos
,

x x y x x x x x y x x x

y y

m x

m α α m m α m α α m m α
L

La

       
    + +  +  −  +
    = −



a a
b  

from which we obtain 

( )

( )

, , ,

,

,

, , ,

,

,

sin sin cos

sin sin cos

x x y x x x

y y

m x

x x y x x x

y y

m x

m α α m m α
m L

La

m α α m m α
m L

La

  



  



  + + 
= −  −




 −  +
= −



, or equivalently, 

 
,

cos
y xy

x

m x

L m
α

L a


=


,  (S5) 

 
,

sin sin
y xy

x y

m x

L m
α α

L a
= −


,  (S6) 

where 
, , , ,xy x y x ym m m m m    −  and ( ) ( ), , , , , ,xy x x y x x ym m m m m m m       + + +   are integers. 

Similarly, substituting Eqs. (S3) and (S4) into Eq. (12) gives 

( ) ( ), , , , , ,

,

cos sin sin cos sin sin
,

x x y x x x x x y x x x

z z

m x

m α α m m α m α α m m α
L

La

       
    − +  +  +  +
    = −



a a
b  

from which we obtain 

( )

( )

, , ,

,

,

, , ,

,

,

cos sin sin

cos sin sin

x x y x x x

z z

m x

x x y x x x

z z

m x

m α α m m α
m L

a L

m α α m m α
m L

a L

  



  



  − + 
= −




 +  +
= −  



, or equivalently, 

 
,

sinz xz
x

m x

L m
α

L a


= −


,  (S7) 

 
,

cos sinz xz
x y

m x

L m
α α

L a
= −


,  (S8) 

where , , , ,xz x z x zm m m m m    −  and ( ) ( ), , , , , ,xz x x z x x zm m m m m m m       + + +   are integers. 

Finally, with cos2x+sin2x=1, we obtain from Eqs. (S5) and (S7) the constraint 
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 ,xy m xxz

y z

m am

L L L L

     
+ =       

  (S9) 

and from Eqs. (S6) and (S8) the constraint 

 
, sin

xy xz
m x y

y z

m m
a α

L L L L

 

 
   

+ =     
  

.  (S10) 

According to the above, we therefore have three cases depending on the values of px and py: 

In the case of y=0 (i.e., px=0), we obtain from Eq. (S6) 

( ) ( ), , , , , ,  xy y y x x x xm m m m m m m     =   = −  + +   and from Eq. (S8) 

( ) ( ), , , , , ,  xz z z x x x xm m m m m m m     =   = −  + +  ; substituting them into Eqs. (S5) and (S7), 

respectively, gives  

 
,

,

, ,

cos
y y

x m x

x x

L m
α a

L m m



 

= − 
+ 

,  (S11) 

 
,

,

, ,

sin
zz

x m x

x x

mL
α a

L m m



 

= 
+ 

.  (S12) 

Therefore, for given (integer) values of four design parameters m1,x1, m2,x0, m1,y−1 and m1,z1, 

one can obtain the values of am,x, m2,y1 and m2,z−1 (the last two must also be integers, thus 

limiting the values of the four design parameters). One can then obtain 
,x m xL L a=  from Eq. (14). 

By further choosing freely the value of [ , )xα π  −  , one can finally obtain the values of Ly/L 

and Lz/L from Eqs. (S11) and (S12), respectively; in the special case of x=0 (i.e., py=0), Lz/L0 

can also be chosen freely. 

In the case of x=0, we obtain from Eq. (S6) 
xym =   thus 

( ) ( ), , , , , ,y y x x x xm m m m m m     = −  + +   and from Eq. (S7) xzm =   thus , , , ,z x z xm m m m   = ; 

substituting them into Eqs. (S5) and (S8), respectively, gives Eq. (S11) and  

 
,

,

,

sin
zz

y m x

x

mL
α a

L m





= − .  (S13) 
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Therefore, for given (integer) values of four design parameters m1,x1, m2,x0, m1,y−1 and m1,z−1, 

one can obtain the values of am,x, m2,y1 and m2,z0 (the last two must also be integers, thus limiting 

the values of the four design parameters). One can then obtain the value of Ly/L from Eq. (S11). By 

further choosing freely the value of [ , )yα π   , one can finally obtain the values of Lx/L and Lz/L 

from Eqs. (14) and (S13), respectively; in the special case of y=0, Lz/L0 can also be chosen freely 

as aforementioned. 

In the case of x0 and y0 (i.e., px0 and py0), Eqs. (S5) and (S6) give 
xym   and 

mxy−1, respectively, and Eqs. (S7) and (S8) give 
xzm  − and mxz−1, respectively; these four 

constraints limit the (integer) values of the six design parameters m1,x1, m2,x0, m1,y−1, m2,y, m1,z 

and m2,z0. One can then obtain the value of am,x. Furthermore, Eqs. (S5) and (S6) give 

tan sinx y xy xyα α m m= −  , and Eqs. (S7) and (S8) give tan sinx y xz xzα α m m=  ; from these 

one can obtain tan x xy xz xy xzα m m m m= −  and sin y xy xz xy xzα m m m m= −  , thus 

( )sin x xy xz xy xzα m m m m=  −  and cos y xy xz xy xzα m m m m= +  . One can finally obtain the 

values of Lx/L, Ly/L and Lz/L from Eqs. (14), (S6) and (S7), respectively. 

 

2. Dissipative Particle Dynamics (DPD) Simulations 

Here we follow the notation in our main text, and give the details of our DPD model and 

simulations used there. The chain connectivity is described by the discrete Gaussian chain model 

with an effective bond length b; the bonded potential of the kth chain is given by 

( )
1

2b

, 1 ,2
1

3

2

N

k k s k s

s

u
b


−

+

=

= − R R , where 1/kBT with kB being the Boltzmann constant and T the 

thermodynamic temperature, N is the number of segments on each chain, and Rk,s denotes the 

spatial position of the sth segment on the kth chain. As for the non-bonded interactions, all segments 

(regardless of their type) repel each other with the pair potential 
0 0( ) ( )u r u r = , where r 
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denotes the distance (under the periodic boundary conditions) between two segments, 

( )( )
23

0( ) 15 2 1u r r  = −  for r and 0 otherwise is the normalized DPD potential (i.e., 

0d ( ) 1u r = r ), and the generalized Helfand compressibility parameter 0 controls the repulsion 

strength (=0 corresponds to the hard-sphere chains). In addition, an A segment repels a B segment 

via the pair potential 
0 0( ) ( )u r u r  =  with the generalized Flory-Huggins parameter 0 

controlling the A-B repulsion strength. In addition to the conservative force due to the above 

bonded and non-bonded potentials, a (dimensionless) dissipative force 

( )ˆ ˆ( )D D

jj jj jj s j j jjβσ γω r βm    
 = − −
 

F r v v r  and a (dimensionless) random force 

ˆ( )R D

jj jj jj jjβσ γω r ξ   = F r  are also applied on segment j by j'j, where 0 is a dimensionless 

parameter controlling their strength, D(r) is a dimensionless weight function, rjj'|rjj'|, rjj'rj−rj', rj 

denotes the spatial position of segment j, ˆ
jj jj jjr  r r , ms denotes the mass of each segment, vj 

denotes the velocity of segment j, and jj' is a random number with zero mean and unit variance. 

Our DPD simulations are performed on NVIDIA GeForce RTX 3080 GPU using the 

GALAMOST software package1. We use the modified velocity-Verlet algorithm proposed by 

Groot and Madden2 (with their parameter =0.65) to integrate the Newton’s equations of motion, 

and set =6.75, D(r)=(1−r/)2 and the integration time step . sδt σ βm=   . For each cubic box 

of given length Ld, we start the DPD simulation from a randomly generated initial configuration, 

and equilibrate the system till the mean square chain end-to-end distance and radius of gyration, as 

well as the global order parameter  for hexagonally packed cylinders (defined in Sec. 4 of the 

main text), calculated for each collected configuration all reach a plateau. 

 

3. Calculation of the Scaling Factor in Our Global Order Parameter 

Ideally, an order parameter for a periodic ordered morphology (POM) should vary between 



6 

 

0 for the (homogeneous) disordered phase and 1 for the POM in the strong-segregation limit (SSL). 

Here we follow the notation in our main text and calculate the scaling factor *, which is taken as 

the maximum of ( ) ( )
A

A

3
*

, ,

1 1 1 1

1
exp 1 exp 1

3

cn N N

i k s i k s

i k s s Ncn N


= = = = +

 
 − − − − − 

 
  q R q R  over all 

orientations for regular-hexagonally packed (RHP) cylinders formed by an incompressible melt 

(where N→∞) of diblock copolymers A-B in the SSL (where N→∞) under the mean-field 

approximation (where 03→∞ with all fluctuation/correlation effects neglected). In this case, we 

can reduce the problem to 2D (i.e., in the plane perpendicular to the cylinders) by considering the 

(periodic) shaded rectangle of lengths Lx=L and 3yL L=  shown in Fig. S1(a) and obtain 

( ) ( )
3

*

A
0 0

1

1
d d 2 ( ) 1 exp 1

3

x yL L

i

ix y

x y
L L

 
=

= − − −   r q r , where the volume fraction of A segments 

(a)  (b)  
 

Figure S1: (a) RHP cylinders (represented by circles) in a plane perpendicular to them, where 

the shaded rectangle has lengths Lx=L and 3yL L=  with L being the intercylinder distance, 

and Sj (j=1,…,4) denote the four half-circles within the rectangle. (b) The scaling factor * 

calculated for RHP cylinders formed by an incompressible melt of diblock copolymers A-B in 

the SSL under the mean-field approximation vs. the volume fraction of A segments NA/N. 
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A

A ,

1 1

( ) ( ) 1
cn N

k s

k sc

V

n N
 

= =

 − =r r R  at spatial position r inside any of the four half-circles Sj 

(j=1,…,4) of radius 
A3 2R N N L=  in the rectangle and 0 otherwise (such that 

A
A

0 0

1
d d ( )

x yL L

x y

N
x y

L L N
 =  r ); with ( )1 2 1 ,1 ,0

T

x yL L=q  ， ( )2 2 1 , 1 ,0
T

x yL L= −q  and 

( )3 2 0,2 ,0
T

yL=q , we then obtain after some algebra 

( ) ( )
2 2

3 4 4
*

1 1 1

2
d d cos d d sin

3 j j
i i

S S
i j jx y

x y x y
L L = = =

   
 = +   

   
   q r q r ; with 

( ) ( )
2 4

3 3d d sin d d sin 0
S S

x y x y= = q r q r , we then calculate all other integrals over the area Sj 

numerically using the Romberg integration3. Fig. S1(b) shows that *0.3276 at NA/N=0.3 and 

increases with increasing NA/N. 
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