Electronic Supporting Information

A new Aggregation Induced Emission Enhancement (AIEE) Dye which Self-assembles to Panchromatic Fluorescent Flowers and has Application in Sensing Dichromate ions

Vivekshinh Kshtriya ${ }^{[a]}$, Bharti Koshti ${ }^{[a]}$, Tahir Mehmood ${ }^{[a]}$, Ramesh Singh ${ }^{[b]}$, Khashti Ballabh Joshi ${ }^{[b]}$, Sujoy Bandyopadhyay ${ }^{[a]}$, Danil W. Boukhvalov ${ }^{[c, d]}$, J. Prakasha Reddy ${ }^{[a] *}$, Nidhi

$$
\text { Gour }^{[a] *}
$$

[a] Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India;
E-mail: nidhi.gour@indrashiluniversity.edu.in; j.prakashareddy@gmail.com;
gournidhi@gmail.com
[b] Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University) Sagar, Madhya Pradesh, 470003, India;
[c] College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, PR China;
[d] Institute of Physics and Technology, Ural Federal University, Mira Str. 19, 620002 Yekaterinburg, Russia

Synthesis of TPA: -

The synthesis of TPA is presented in scheme S1. The synthesis was done by using previously reported procedures and protocols in five steps. ${ }^{1}$

Scheme S1 Synthetic routes of TPA and other intermediate compounds

Synthesis of Stage-1: A three-necked round bottom flask was fitted with a dropping funnel which contained 60 mL of dry acetone. A $5.0 \mathrm{~g}(27 \mathrm{mM})$ of 2-amino-6-methoxy pyridine was added in the round bottom flask and dropwise addition of dry acetone was done under nitrogen atmosphere from the addition funnel with constant and vigorous stirring of the reaction mixture. Subsequently, $6.9 \mathrm{~g}(42 \mathrm{mM})$ of benzoyl isothiocyanate was added and the reaction mixture was then allowed to stir for 2 to 4 hours at room temperature. The reaction was monitored by using analytical TLC and ethyl acetate: hexane (30%) solvent mixture as a mobile phase. After the completion of reaction, the reaction mixture was allowed to distill under reduced pressure to remove acetone. The residue was then poured carefully with stirring into 500 mL of cold water and the resulting yellow precipitate of $(\mathrm{N}-((6-$ methoxypyridin-2-yl)carbamothioyl)benzamide) was separated by suction filtration followed by washing of the precipitate with water ($3 \times 100 \mathrm{~mL}$). The filtrate was further distilled under reduced pressure which yielded desired product ($11 \mathrm{~g}, 36 \mathrm{mM}$, yield: 88%) as solid lightyellow material. M.P. $136{ }^{\circ} \mathrm{C}$, Rf 0.53 (This material was used in the next step without any further purification).

Synthesis of stage-2: To the 20 mL THF solution of stage-1 $(11 \mathrm{~g})$ in three necked round bottom flask, 20 mL of aqueous NaOH (3.0 eq.) solution was added dropwise during the course of 15 minutes. The reaction mixture was then allowed to heat at $60{ }^{\circ} \mathrm{C}$ for 2-8 hours. The progress of the reaction was monitored by using TLC with the use of ethyl acetate: hexane (20%) solvent mixture as a mobile phase. After completion of the reaction the reaction mixture was distilled under reduced pressure and the residue was re-dissolved in ethyl acetate followed by extraction and washing with water and brine solution. Subsequently, to the organic layer, anhydrous sodium sulphate was added. The organic layer was then filtered and the solvent was evaporated using the high vacuum which gives intermediate-B ($5.1 \mathrm{~g}, 27 \mathrm{mM}$, Yields 80%). The compound was then characterized by ${ }^{1} \mathrm{H}$ NMR and used for the next step without any further purification. M.P. $214{ }^{\circ} \mathrm{C}, \operatorname{Rf} 0.42,{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6, $\left.25^{\circ} \mathrm{C}, \mathrm{TMS}\right) \delta(\mathrm{ppm})=10.50(\mathrm{~s}, 1 \mathrm{H}), 10.04(\mathrm{~s}, 1 \mathrm{H}), 8.85(\mathrm{~s}$, $1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$.

Synthesis of Stage-3: Stage-2 (5.0 g, $2.73 \mathrm{mM}, 1.0$ eq.) was dissolved in acetic acid (30 mL) and stirred till the reaction mass becomes clear. Lithium bromide ($4.6 \mathrm{~g}, 5.43 \mathrm{mM}, 2.0$ eq.) was added at room temperature and allowed to stirred it for 30 minutes. After that bromine $(0.86 \mathrm{~g}, 50.00 \mathrm{mM}, 2.0$ eq.) was added at room temperature and the reaction mixture further stirred for 30 minutes. The reaction mixture was then refluxed at $60^{\circ} \mathrm{C}$ for 4 to 8 hours. TLC observation in 50% ethyl acetate: hexane as a mobile phase showed that the starting material was consumed and product was formed. The reaction mixture was then allowed to cool at room temperature followed by the addition of 25% aqueous ammonia under ice cold condition to get pH 7 to 8 . The crude solution was then extracted with ($3 \times 100 \mathrm{~mL}$) ethyl acetate followed by washing with $10 \% \mathrm{NaHCO} 3$ solution ($3 \times 25 \mathrm{~mL}$). The organic layer was then washed with brine solution ($2 \times 10 \mathrm{~mL}$) followed by drying over anhydrous sodium sulphate. Ethyl acetate was evaporated under reduced pressure to get the crude compound,
which was further purified by using a silica gel column chromatography and $0-15 \%$ ethyl acetate and hexane as mobile phase which give ($2.2 \mathrm{~g}, 11 \mathrm{mM}$, Yield: 65%), M.P. $174{ }^{\circ} \mathrm{C}, \mathrm{Rf}$ $0.38,{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\left.d 6,25^{\circ} \mathrm{C}, \mathrm{TMS}\right) \delta(\mathrm{ppm})=7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}$, $\mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{~s}, \mathrm{t} 3 \mathrm{H}) . \mathrm{LC}-\mathrm{MS}$ for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{OS}$ was calculated 182.0388 and found $[\mathrm{M}+\mathrm{H}]^{+}=182.0399$.

Synthesis of Stage-4: Take the stage-3 compound ($1.0 \mathrm{~g}, 5.2 \mathrm{mM}, 1.0 \mathrm{eq}$.$) in THF and then$ tert-Butyl nitrite ($1.1 \mathrm{~g}, 11.5 \mathrm{mM}, 1.8$ eq.) was added at room temperature. The reaction mixture was then refluxed at $60^{\circ} \mathrm{C}$ for 12 hours. The progress of the reaction mixture was monitored by analytical TLC using 30\% ethyl acetate: hexane mixture as a mobile phase which showed the starting material was completely consumed and the product was formed. The reaction mixture was then allowed to cool at room temperature. Ice cold water was added in the reaction mixture and extracted with ($3 \times 100 \mathrm{~mL}$) ethyl acetate. The combine organic layer was collected and washed with the saturated brine solution ($3 \times 10 \mathrm{~mL}$) followed by drying of the organic layer over anhydrous sodium sulphate. Ethyl acetate was evaporated to get the crude compound (1.5 g), which was further purified by using a silica gel column chromatography in (0 to 20% ethyl acetate gradient in hexane) to give (2.5 g , yield: 70%, M.P. $99{ }^{\circ} \mathrm{C}$), Rf 0.6, ${ }^{1} \mathrm{H}$ NMR (400 MHz DMSO-d6, $25^{\circ} \mathrm{C}$, TMS) $\delta(\mathrm{ppm})=9.55(\mathrm{~s}, 1 \mathrm{H}) ; 8.5$ (d, J = 8.8 Hz,1H); $6.96(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.93(\mathrm{~s}, 3 \mathrm{H}) .13 \mathrm{C}$ NMR (100 MHz, DMSO-d6, 25 oC, TMS $\delta(\mathrm{ppm})=170.13,162.86,142.00,132.18,116.12,103.09,53.40$. LCHRMS for C7H8N2OS was calculated 167.0279 and found $[\mathrm{M}+\mathrm{H}]^{+}=167.0282$.

Synthesis of TPA: Stage-4 ($0.5 \mathrm{~g}, 3.0 \mathrm{mM}, 1.0 \mathrm{eq}$.$) , 4-Bromo-N,N-dimethylaniline (0.602 \mathrm{~g}$, $3.0 \mathrm{mM}, 1.0$ eq. $)$ and cesium carbonate $\left(\mathrm{Cs}_{2} \mathrm{CO}_{3}\right)(2.94 \mathrm{~g}, 9.01 \mathrm{mM}, 3.0$ eq.) was taken in a pressure vial and subsequently dissolved it in toluene (10 mL). The reaction mixture was degassed for 15 minute at room temperature. Copper(I)bromide $(\mathrm{Cu}(\mathrm{I}) \mathrm{Br})(0.346 \mathrm{~g}, 2.408$ $\mathrm{mM}, 1.0$ eq. $)$, palladium (II) acetate $\left(\mathrm{Pd}(\mathrm{OAc})_{2)}(0.169 \mathrm{~g}, 0.6 \mathrm{mM}, 1 \mathrm{eq}\right.$.$) and xantphos (0.7 \mathrm{~g}$,
$1.0 \mathrm{mM}, 0.3$ eq.) was added and then the reaction mixture was further degassed for another 5 minutes. The reaction mixture was then sealed in pressure vial and again heated at $120^{\circ} \mathrm{C}$ for 16 hours. After the completion of the reaction, the reaction mixture was allowed to cool at room temperature and the reaction mass was dried under reduced pressure and the remaining residue poured into the ice-cold water followed by the extraction with ($3 \times 100 \mathrm{~mL}$) ethyl acetate. The combined organic layer was collected and washed with saturated brine solution ($1 \times 10 \mathrm{~mL}$), followed by drying of the organic layer over anhydrous sodium sulphate. Ethyl acetate was evaporated under reduced pressure to get the crude compound $(0.7 \mathrm{~g})$ which was further purified by using a silica gel column chromatography in (0 to 30\% ethyl acetate gradient in hexane) to give a yellow color solid. (0.2 g), Rf $0.49,{ }^{1} \mathrm{H}$ NMR: (400 MHz , DMSO- $\left.d_{6}, 25^{\circ} \mathrm{C}, \mathrm{TMS}\right) \delta(\mathrm{ppm})=8.36(\mathrm{~d}, J=8.00 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.93-7.90(\mathrm{~m}, 2 \mathrm{H}) ; 8.12(\mathrm{dd}, 3 \mathrm{H})$; $3.98(\mathrm{~s}, 3 \mathrm{H}) ; 3.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (400 MHz, DMSO- $d_{6}, 25^{\circ} \mathrm{C}, \mathrm{TMS}$) $\delta(\mathrm{ppm})=171.23$, $163.55,163.04,152.98,133.81,128.70,120.45,119.98,112.26,108.24,53.84,40.65$ LC-MS for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}$ was calculated 285.09 and found $[\mathrm{M}+\mathrm{H}]^{+}=286.39$.

Fig. S2 TLC and vial image of TPA under UV chamber.

Fig S3 Microscopic images of TPA (3 mM) after 24 h of incubation at RT in DMSO (a) Optical microscopy image under bright field; (b) Fluorescence microscopy image under FITC filter (Ex 480/40; Em 527/30); (c) Fluorescence microscopy image under rhodamine filter (Ex 546/10; Em 585/40). Microscopic images of TPA in DMSO (3 mM) incubated for 1 h at $37.4{ }^{\circ} \mathrm{C}$ (d) Optical microscopy image under bright field; (e) Fluorescence microscopy image under FITC filter (Ex 480/40; Em 527/30); (f) Fluorescence microscopy image under rhodamine filter (Ex 546/10; Em 585/40).

Fig. S4 Transmission electron microscopy (TEM) images of TPA in DMSO (a-c) at $2 \mu \mathrm{~m}$;
(d) Selected area electron diffraction of TPA reveal it is not crystalline in nature.

Fig. S5 Optical microscopy images of TPA (a) Under bright field; (b) Phase contrast image of TPA confirm non crystalline nature as the structures appeared dark and not shiny.

Fig. S6 Microscopic images of TPA in THF (3 mM) incubated for 1 h at $25^{\circ} \mathrm{C}(\mathrm{a}-\mathrm{c})$ SEM images under different magnifications; (d) Optical microscopy image under bright field; (e) Fluorescence microscopy image under FITC filter (Ex 480/40; Em 527/30); (f) Fluorescence microscopy image under rhodamine filter (Ex 546/10; Em 585/40).

Fig. S7 Microscopic images of TPA under the varying percentage of water in THF under bright filed, FITC filter (Ex 480/40; Em 527/30) and rhodamine filter (Ex 546/10; Em 585/40) (a-c) TPA assembles to flower-like structures in neat THF; (d-f) gradually starts aggregating at 10% water in THF; ($\mathrm{g}-\mathrm{i}$) as the percentage of water in THF is increased to 30%; (j-1) morphological transitions could be observed with spherical aggregates which become more aggregated at 50% water in THF; (m-o) more aggregated spherical are observed till 70% water in THF; (p-r) disaggregates to small rods and small particles at 90% water in THF which is accompanied by a decrease in the fluorescence; (s-u) shows crystalline rod-like structure in 98% water in THF.

Fig. S8 The vial images of TPA with increasing $\%$ of water in DMSO from $0-98 \%$ water. (Under UV transiiluminator ~320 nm)

Fig. S9 The graph of intensity of fluorescence of TPA vs percentage of water in DMSO (a) recorded at Ex 320 in different time intervals from $0-6 \mathrm{~h}$; (b) recorded at Ex 385 in different time intervals from 0-6 h

Fig. S10 Microscopic images of TPA under the varying percentage of water in acetone under
bright field, FITC filter (Ex 480/40; Em 527/30) and rhodamine filter (Ex 546/10; Em 585/40). (a-c) in neat acetone; (d-f) at 10% water in acetone; ($\mathrm{g}-\mathrm{i}$) at 30% water in acetone; $(\mathrm{j}-1)$ at 50% water in acetone; (m-o) at 70% water in acetone; (p-r) at 90% water in acetone.

Fig. S11 The graph of the intensity of fluorescence of TPA vs percentage of water in acetone (a) at Ex 320 before and after 30 minutes; (b) at Ex 385 before and after 30 minutes; (c) Vial images of TPA in acetone with increasing percentage of water from 0 to 98% under UV light (~320 nm).

HOMO LUMO calculations

The HOMO and LUMO energy calculation have been carried out by using B3LYP (Becke three-parameter Lee-Yang-Parr). Further the molecular geometric structure of TPA has been optimized by DFT calculations subsequently the energy calculations were done and the optimized structure has been shown in Fig. S12 and S13.

Fig. S12 Lowest unoccupied molecular orbital (LUMO) diagram

Fig. S13 Highest occupied molecular orbital (HOMO) diagram

Fig. S14 Calculated binding energies in eV (first set) and probabilities calculated by Boltzmann formula at room temperature for two TPA molecules connected by single water molecule (see Fig. 5a, 5b in main text). The zero angle is corresponding with head over head configuration and 180 degree with head over tail configuration.

Degree / Binding Energy (eV)
$0 \quad-0,2451$
$10-0,6844$
$20-0,8206$
$30-0,7506$
$40-0,6792$
$50-0,6096$
$60-0,6149$
$70-0,6883$

$80-0,6386$	
$90-0,6801$	
100-0,2599	
$110-0,1564$	
120-0,8375	
130-0,8491	
140-0,9588	
150-0,6152	
160-0,3346	
170-0,1283	
180-0,1455	
190-0,1283	
200-0,3346	
210-0,6152	
$220-0,9588$	
$230-0,8491$	
$240-0,8375$	
250-0,1564	
260-0,2599	
270-0,6801	
280-0,6386	
290-0,6883	
300-0,6149	
$310-0,6096$	
320-0,6792	
$330-0,7506$	
$340-0,8206$	
350-0,6844	
Degree / Probability (\%)	
0.00000000	$4.14047650 \mathrm{E}-11$
10.0000000	$1.11283641 \mathrm{E}-03$
20.0000000	0.223782480
30.0000000	$1.46553339 \mathrm{E}-02$
40.0000000	$9.08844173 \mathrm{E}-04$
50.0000000	$6.04538836 \mathrm{E}-05$
60.0000000	$7.43116325 \mathrm{E}-05$
70.0000000	$1.29535247 \mathrm{E}-03$
80.0000000	$1.87011217 \mathrm{E}-04$
90.0000000	$9.41261707 \mathrm{E}-04$
100.000000	$7.36793335 \mathrm{E}-11$
110.000000	$1.30908479 \mathrm{E}-12$
120.000000	0.432151675
130.000000	0.678913713
140.000000	48.6458473
150.000000	$7.51847256 \mathrm{E}-05$
160.000000	$1.35101985 \mathrm{E}-09$
170.000000	$4.38272763 \mathrm{E}-13$
180.000000	$8.56305315 \mathrm{E}-13$

190.000000	$4.38272763 \mathrm{E}-13$
200.000000	$1.35101985 \mathrm{E}-09$
210.000000	$7.51847256 \mathrm{E}-05$
220.000000	48.6458473
230.000000	0.678913713
240.000000	0.432151675
250.000000	$1.30908479 \mathrm{E}-12$
260.000000	$7.36793335 \mathrm{E}-11$
270.000000	$9.41261707 \mathrm{E}-04$
280.000000	$1.87011217 \mathrm{E}-04$
290.000000	$1.29535247 \mathrm{E}-03$
300.000000	$7.43116325 \mathrm{E}-05$
310.000000	$6.04538836 \mathrm{E}-05$
320.000000	$9.08844173 \mathrm{E}-04$
330.000000	$1.46553339 \mathrm{E}-02$
340.000000	0.223782480
350.000000	$1.11283641 \mathrm{E}-03$

Fig. S15 Calculated binding energies in eV (first set) and probabilities calculated by Boltzmann formula at room temperature for two TPA molecules without solvent molecules between (see Figure 5c, 5d, 5e and 5f in main text). The zero angle is corresponding with head over head configuration and 180 degree with head over tail configuration.

Degree / Binding Energy (eV)
$0-0,67155$
$10-0,64485$
$20-0,67265$
$30-0,66105$
$40-0,61385$
$50-0,5852$
$60-0,5778$
$70-0,57$
$80-0,54$
$90-0,3642$
$100-0,66125$
$110-0,6447$
$120-0,63755$
$130-0,64445$
$140-0,5157$
150-0,5005
$160-0,4733$
$170-0,66125$
$180-0,65195$
190-0,66125
200-0,6447
$210-0,63755$
$220-0,64445$

$$
\begin{aligned}
& 230-0,5157 \\
& 240-0,5005 \\
& 250-0,4733 \\
& 260-0,4823 \\
& 270-0,3642 \\
& 280-0,54 \\
& 290-0,57 \\
& 300-0,5778 \\
& 310-0,5852 \\
& 320-0,61385 \\
& 330-0,66105 \\
& 340-0,67265 \\
& 350-0,64485
\end{aligned}
$$

Degree / Probability (\%)

0.00000000	10.0793095
10.0000000	3.56356144
20.0000000	10.5204401
30.0000000	6.69664383
40.0000000	1.06565535
50.0000000	0.349214226
60.0000000	0.261784434
70.0000000	0.193210810
80.0000000	$6.00724779 \mathrm{E}-02$
90.0000000	$6.39102072 \mathrm{E}-05$
100.000000	6.74898577
110.000000	3.54280329
120.000000	2.68180799
130.000000	3.50848770
140.000000	$2.33193990 \mathrm{E}-02$
150.000000	$1.29020195 \mathrm{E}-02$
160.000000	$4.47357260 \mathrm{E}-03$
170.000000	6.74898577
180.000000	4.69849396
190.000000	6.74898577
200.000000	3.54280329
210.000000	2.68180799
220.000000	3.50848770
230.000000	$2.33193990 \mathrm{E}-02$
240.000000	$1.29020195 \mathrm{E}-02$
250.000000	$4.47357260 \mathrm{E}-03$
260.000000	$6.35128375 \mathrm{E}-03$
270.000000	$6.39102072 \mathrm{E}-05$
280.000000	$6.00724779 \mathrm{E}-02$
290.000000	0.193210810
300.000000	0.261784434
310.000000	0.349214226
320.000000	1.06565535
330.000000	6.69664383

```
340.000000 10.5204401
350.000000 3.56356144
```

Fig. S16 Calculated binding energies in eV (first set) and probabilities calculated by Boltzmann formula at room temperature for two TPA molecules with DMSO solvent molecules between (see Figure 5 g , 5 h in main text). The zero angle is corresponding with head over head configuration and 180 degree with head over tail configuration.

Degree / Binding Energy (eV)
0-1,1649
$10-1,1110$
20-1,1250
$30-1,1445$
$40-1,1580$
$50-1,0365$
60 0,8889
70 1,2969
80 1,7962
90 1,8061
100 1,8901
110 1,9408
1200,7755
130 1,3711
140 1,6600
150 1,8696
160 1,4670
170 2,0065
180 1,9327
190 2,0065
200 1,4670
210 1,8696
220 1,6600
230 1,3711
240 0,7755
250 1,9408
260 1,8901
270 1,8061
280 1,7962
290 1,2969
300 0,8889
310-1,0365
$320-1,1580$
330-1,1445
$340-1,1250$
350-1,1110
Degree / Probability (\%)

0.00000000	24.3070126
10.0000000	2.97976971
20.0000000	5.13984776
30.0000000	10.9832706
40.0000000	18.5798321
50.0000000	0.163775608
60.0000000	$4.48901778 \mathrm{E}-34$
70.0000000	$5.65073606 \mathrm{E}-41$
80.0000000	0.00000000
90.0000000	0.00000000
100.000000	0.00000000
110.000000	0.00000000
120.000000	$3.71497005 \mathrm{E}-32$
130.000000	$3.14171116 \mathrm{E}-42$
140.000000	0.00000000
150.000000	0.00000000
160.000000	$7.56701171 \mathrm{E}-44$
170.000000	0.00000000
180.000000	0.00000000
190.000000	0.00000000
200.000000	$7.56701171 \mathrm{E}-44$
210.000000	0.00000000
220.000000	0.00000000
230.000000	$3.14171116 \mathrm{E}-42$
240.000000	$3.71497005 \mathrm{E}-32$
250.000000	0.00000000
260.000000	0.00000000
270.000000	0.00000000
280.000000	0.00000000
290.000000	$5.65073606 \mathrm{E}-41$
300.000000	$4.48901778 \mathrm{E}-34$
310.000000	0.163775608
320.000000	18.5798321
330.000000	10.9832706
340.000000	5.13984776
350.000000	2.97976971

Table S1 Crystallographic data and refinement parameters for TPA crystal.

Parameters	TPA
Empirical formula	$\underline{\mathrm{C}}_{15} \underline{\mathrm{H}}_{15} \underline{\mathrm{~N}}_{3} \underline{\mathrm{OS}}$
Formula weight	285.36
Temperature (K)	$294(2)$
Crystal system	Monoclinic
Space group	$P 2_{1} / n$
a, ($\AA)$	$6.6492(8)$
b, (A)	$13.731(2)$
c, (\AA)	$15.329(2)$

$\beta,\left({ }^{0}\right)$	$101.032(5)$
Volume $\left(\AA^{3}\right)$	$1373.7(3)$
Z	4
$\mu\left(\mathrm{~mm}^{-1}\right)$	0.23
$\mathrm{~F}(000)$	600
Crystal size $\left(\mathrm{mm}^{3}\right)$	$0.27 \times 0.24 \times 0.16$
Radiation	$\mathrm{MoK}(\lambda=0.71073)$
Index ranges	$-7 \leq h \leq 8,-18 \leq k \leq 18,-20 \leq l \leq 20$
Reflections collected	29104
Independent reflections	$3402\left[\mathrm{R}_{\text {int }}=0.084\right]$
No. of parameters	184
Goodness-of-fit on F^{2}	1.075
Final R indexes $[\mathrm{I} \geq 2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.1081, \mathrm{wR}_{2}=0.1465$
Final R indexes $[$ all data $]$	$\mathrm{R}_{1}=0.0623, \mathrm{wR}_{2}=0.1279$
Largest diff. peak/hole $\left(\mathrm{e} \AA^{-3}\right)$	$0.19 /-0.20$
CCDC deposition no.	2109329

Fig. S17 View of TPA showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented by circles of arbitrary radii.

Fig. S18 Visualization of interactions between stacked layers through C-H $\bullet \cdot \mathrm{N}$ hydrogen bonding.

Fig. S19 Visualization of interactions between stacked layers through $\pi \cdots \cdots \pi$ (between pyridothiazole fragments) contacts.

Fig. S20 Dihedral angle (torsion angle) along the C-C bond connecting methoxy benzothiazole fragment and dimethylaniline ring (highlighted in light green) of TPA.

Fig. S21 The vial images of TPA with increasing percentage of water in THF from 0-98 \% water under day light.

Fig. S22 Normalized absorption, emission $(\lambda e x=385 \mathrm{~nm})$ and excitation $(\lambda \mathrm{em}=452 \mathrm{~nm})$ spectra of TPA at $10 \mu \mathrm{M}$ concentration.

Fig. S23 UV and fluorescence spectra of TPA in various solvents (a) Normalized UV-Visible spectra of TPA in different solvents at $10 \mu \mathrm{M}$ concentration; (b) Normalized fluorescence spectra of TPA in different solvents at $10 \mu \mathrm{M}$ concentration.

Table S2 Spectroscopic data of TPA in various organic solvents.

Solvent	Absorption		Fluorescence
Entry	λ max (nm) TE region	$\boldsymbol{\lambda m a x}$ (nm) PI region	$\boldsymbol{\lambda m a x}$ (nm)
Water	380	380	475
Methanol	381	381	446
Ethanol	380	380	441
DMSO	385	385	452
DMF	382	382	446
Acetone	377	377	437
THF	374	374	430
Ethyl acetate	372	372	425
Acetonitrile	385	385	442
Chloroform	379	379	423
n-Hexane	365	365	417
Isopropyl alcohol	379	379	437
(IPA)			

The photophysical properties of new TPA is summarised in Table S2.

Fig. S24 Position of ellipticine fluorescence maximum as a function of solvent dielectric constants such as $\mathbf{1}$ (water), $\mathbf{2}$ (methanol), $\mathbf{3}$ (ethanol), $\mathbf{4}$ (DMSO), $\mathbf{5}$ (DMF), $\mathbf{6}$ (THF), 7(EtOAc), $\mathbf{8}\left(\mathrm{CHCl}_{3}\right), 9$ (IPA).

Table S3 Fluorescence decay parameters for TPA in DMF; the lifetimes ($\tau_{1}, \tau_{2 \text {, and }} \tau_{3}$) and the respective fractional contributions (α_{1}, α_{2} and α_{3}), the weighted average lifetime ($\tau_{\text {avg }}$) and the quality of fitting (χ^{2}) for the data in Fig. 7d are shown.

Sample	$\tau_{\mathbf{1}(\mathbf{n s})}$	α_{1}	$\tau_{\mathbf{2}(\mathbf{n s})}$	$\boldsymbol{\alpha}_{\mathbf{2}}$	$\tau_{\mathbf{3}(\mathbf{n s})}$	α_{3}	$\tau_{\text {avg(ns) }}$	χ^{2}
TPA	0.66	49.42	1.75	1.12	0.66	49.47	0.668	1.53

Fluorescence quantum yield (

The fluorescence quantum yields of TPA in DMF were estimated by comparison with coumarin-153 in ethanol ($\Phi_{\mathrm{f}}=0.38$). (The quantum yields were calculated using the following equation. ${ }^{2,3}$)

$$
\Phi_{f, x}=\Phi_{f, s} \cdot \frac{F_{x}}{F_{s}} \cdot \frac{f_{s}}{f_{x}} \cdot \frac{n_{x}^{2}}{n_{s}^{2}}
$$

where, is fluorescence quantum yield, subscript x denotes unknown sample and subscript s refers to standard. F denotes integral fluorescence; n refers to refractive index of the solvent used in the measurements and f is the absorption factor at the excitation wavelength given by the following equation:

$$
f=1-10^{-\varepsilon\left(\lambda_{e x}\right) c l}=1-10^{-A\left(\lambda_{e x}\right)}
$$

where A is absorbance and $\varepsilon=$ molar extinction coefficient in $\mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}$.
We found the quantum yield of the TPA in DMF is 0.11 or $\sim 11 \%$.

Fig. S25 Vial images of TPA with different metal ions in acetic acid (AcOH). Cr^{6+} is oxidation state in dichromate ions.

Fig. S26 Vial images TPA (1) in DMSO; (2) in acetic acid (AcOH); (3) TPA in AcOH with F^{-}; (4) TPA in AcOH with Cr^{3+}; (5) TPA in AcOH with $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$.

Fig. $\mathbf{S 2 7}$ Limit of detection of (LOD) TPA @ 382 nm

Fig. S28 Mass spectra of TPA

Fig. S29 HPLC Chromatogram of TPA

Fig. S30 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of TPA

Fig. S31 ${ }^{13} \mathrm{C}$ NMR spectra of TPA

Reference:

[1] N. Gour, V. Kshtriya, S. Gupta, B. Koshti, R. Singh, D. Patel and K. B. Joshi, ACS Appl. Bio Mater., 2019, 2, 4442-4455.
[2] C. Würth, M. Grabolle, J. Pauli, M. Spieles, U. Resch-Genger, Nat. Protoc., 2013, 8, 1535-1550.
[3] K. Rurack, M. Spieles, Anal. Chem., 2011, 83, 1232-1242.

