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A. Details of the model

We present a mesoscopic model to simulate the dynam-
ics of block copolymer nanocomposites with anisotropic
NPs. This hybrid in-grid/out-of-grid dynamic algorithm
combines a continuous description for the BCP with an
individual description of NPs following Brownian dynam-
ics.

The total free energy of the system can be decomposed
as

Ftot = Fpol + Fcpl + Fcc (1)

where the polymer free energy is Fpol, the coupling free
energy Fcpl introduces the presence of the NPs in the
BCP, and the colloid-colloid interaction is Fcc.

1. BCP modelling

The BCP is characterized by the order parameter
ψ(r, t) which is related to the differences in the local
monomer concentration ϕA(r, t) and ϕB(r, t) of block A
and B, respectively,

ψ(r, t) = ϕA(r, t)− ϕB(r, t) + (1− 2f0) (2)

with the composition ratio f0 = NA/(NA + NB) being
the overall volume fraction of monomers A in the system.
ψ(r, t) is considered the local order parameter, which has
a value 0 for the disordered-or homogeneous- state and
|ψ| > 0 for microphase-separated regions.
The time evolution of ψ(r, t) is dictated by the con-

servation of mass, resulting in the Cahn-Hilliard-Cook
equation [1–3]

∂ψ(r, t)

∂t
=M∇2

[
δFtot[ψ]

δψ

]
+ η(r, t) (3)

with M being a mobility parameter and η(r, t) being a
gaussian noise parameter that satisfies the fluctuation-
dissipation theorem

⟨η(r, t)η(r′, t′)⟩ = −kBTM∇2δ(r− r′)δ(t− t′) (4)

for which we have used the algorithm given by Ball[3].
kBT sets the thermal energy scale of the diblock copoly-
mer.

The polymeric free energy appearing in equation 1 is
the standard Ohta-Kawasaki free energy[4], which can
be further decomposed into short and long range terms
Fpol = Fsr + Flr which can be expressed as

Fsr[ψ] =

∫
dr

[
H(ψ) +

1

2
D|∇ψ|2

]
(5a)

Flr[ψ] =
1

2
B

∫
dr

∫
dr′G(r, r′)ψ(r)ψ(r′) (5b)

with G(r, r′) satisfying ∇2G(r, r′) = −δ(r− r′), i.e., the
Green function for the Laplacian. The local free energy
can be written as [5]

H(ψ) =
1

2
τ ′ψ2 +

1

3
v(1− 2f0)ψ

3 +
1

4
uψ4 (6)

where τ ′ = −τ0 +A(1− 2f0)
2, u and v specify the order

parameter bulk values [4]. The local free energy H(ψ)
possesses 2 minima values ψ− and ψ+ which are the val-
ues that ψ(r, t) takes in the phase-separated domains.
Parameter D in Equation 5a is related to the interface
size ξ =

√
D/τ ′ between domains and B in Equation 5b

to the periodicity of the system H ∝ 1/
√
B as the long

ranged free energy takes into account the junction of the
two chains in a diblock copolymer.

2. Modelling anisotropic nanoparticles

Nanoparticles are modelled as solid particles interact-
ing with the BCP through a coupling term in the free
energy

Fcpl =

Np∑
p=1

σ

∫
dr ψc(s(Rp, ûp)) [ψ(r)− ψ0]

2
(7)

where the position and orientation of particle p is spec-
ified by the vectors Rp and ûp (which can be easily ex-
tended for biaxial particles). The parameter σ character-
izes the interaction strength, while the chemical affinity
ψ0 is related to the coating in the surface of the parti-
cle. Tuning ψ0 modifies the compatibility of the particle
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with either phase of the BCP. Finally, the shape of the
particle is introduced implicitly via the generalised radial
distance s(Rp, ûp), while the dependence of the tagged
function with s defines the core and corona of the NP.
The functional form is chosen as[6]

ψc(s) = exp

[
1− 1

1− s

]
(8)

which is a continuously decaying function of s with con-
tinuous derivative on ψc(1) = ψ′

c(1) = 0, which allows
for a natural definition of cut-off radius in the BCP-NP
interaction. While for spherical particles the parametri-
sation is expressed as s = (x2+y2+z2)/R2

eff , for the case
of anisotropic particles we choose to generalise the equa-
tion of a sphere into superellipses of arbitrary shape[7, 8].
The solid particle is enclosed by the surface

s =

[∣∣∣x
a

∣∣∣2n +
∣∣∣y
b

∣∣∣2n +
∣∣∣z
c

∣∣∣2n]1/n = 1 (9)

for a resting super-ellipse with three main semi-axis
a, b and c pointing into the X,Y and Z coordinates,
respectively[9]. This family of surfaces enclose objects
such as spheres, ellipsoids, prism and rounded-corner
cuboids. The exponent n characterizes the family of
shapes, while the relative values a, b and c determine the
size and the anisotropy of the object. These parameters
can be continuously tuned to model any shape belonging
to the described set of surfaces. Euler angles α, β and γ
are used within the algorithm to facilitate the calculation
of forces and torques.

In order to model NPs at finite concentrations, we re-
quire an interparticle potential that prevents overlapping.
The colloid-colloid potential contributes to the total free
energy via the term

Fcc =
∑
i ̸=j

U(rij , r̂ij , ûi, ûj) (10)

which introduces a pairwise additive potential U depend-
ing in general on the distances and orientations of the pair
particles. Oblate and prolate spheroid interactions have
been modelled in the past using the Gay-Berne (GB)
potential[10, 11] with notable results in the field of liq-
uid crystals[12]. While this potential possess appropriate
features -capturing the spheroid shape and possessing at-
tractive and repulsive terms- we select a totally repulsive,
Yukawa-like potential that allows for a larger time step.
In order to capture the anisotropy of the particles, we
substitute the Yukawa diameter for the orientational de-
pendent σGB(r̂ij , ûi, ûj) parameter present in GB poten-
tials, leading to a potential

U(rij , r̂ij , ûi, ûj) = U0

[
exp(rij/σGB(r̂ij , ûi, ûj))

rij/σGB(r̂ij , ûi, ûj)
− 1

]
(11)

which totally repulsive. At cut-off is introduced which
depends on the colloid-colloid orientation with respect to

each other, and the relative vector. This cut-off sets the
range of the colloid-colloid interaction as 2a, 2b and 2c
along the three main axes of the colloid, that is, the cut-
off conforms to the NP shape as specified in the coupling
potential in equations 7, 8 and 9. Throughout this work,
the colloid-colloid contribution plays a negligible role due
to the highly diluted concentrations that are simulated.

3. Colloidal dynamics

Colloids undergo diffusive dynamics following the
Langevin equation in the over-damped limit. The trans-
lational and orientational degrees of freedom of particle
i evolve according to Brownian dynamics, respectively,

dRi

dt
=

↔
M trans(ϕi) · fi + ξtrans (12a)

dϕi
dt

=
↔
Mrot(ϕi) ·mi + ξrot (12b)

where forces and torques are fi and mi, respectively. The
NP rotational state is specified by the three Euler angles
contained in the angular vector ϕi = [αi, βi, γi]. The

translational and rotational mobility tensor -
↔
M trans and↔

Mrot ,respectively- are rotated according to the orienta-
tion of the particle. The random translational and rota-
tional vectors - ξtrans and ξrot, respectively - satisfy the
anisotropic fluctuation-dissipation theorem.

B. Computational details

In this work we make use of the Cell Dynamic Sim-
ulation (CDS) method to discretise the Cahn-Hilliard
equation[13–15]. The CDS has been shown to allow for
large time steps with a high degree of isotropy, which
renders it appropriate for coarse-grained simulations. In
this numerical method, the laplacian is discretised in a
stencil as ∇2ψ ≈ 1

(δx)2 [⟨⟨ψ⟩⟩ − ψ]. In three dimensions

the local average value of a quantity ψ is expressed as

⟨⟨ψ⟩⟩ = 6

80

∑
NN

ψ +
3

80

∑
NNN

ψ +
1

80

∑
NNNN

ψ (13)

with NN, NNN, NNNN meaning nearest neighbours,
next-nearest neighbours, and next-next-nearest neigh-
bours, respectively. The colloidal dynamics is numeri-
cally solved using a standard forward Euler integration
method.

1. Simulation parameters

In this section we provide details on some parameters
which are not essential for the main text but are crucial
for reproduciblity of the simulations.
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The BCP parameters are set to standard values as τ0 =
0.35, u = 0.5, v = 1.5, D = 1.0, B = 0.02,M = 1. The
colloid parameters as set to σ = 1, kBT = 0.05, U0 =
10.0.

The BCC-to-HEX phase transition in the neat BCP
(ie ϕp = 0) is identified at f∗BCC−HEX

0 = 0.4122 for
the set of parameters that are used in this work. The
space discresitation (lattice spacing) is δx = 1.0 and the
time discretisation is δt = 0.1. The system size in all
simulations is V = 642 × 32 grid points, expect for the
large scale snapshots in figure 3 (c), (d) and (e) in the
main text, where the number of grid points is V = 1282×
32.

2. Length scales

To facilitate reproducibility we provide details on the
length scales and relative length scales in the system.
The interface thickness between the A and B interface
can be analytically determined as ξinterface =

√
D/τ =

1.69 grid points. The BCP domain diameter (diameter of
spheres in BCC and diameter of cylinders in HEX phase)
is estimated from simulations as Rψ ≈ 6.0 grid points
while the periodicity is found to be Hψ−BCC = 11.0 and
Hψ−HEX = 10.0 grid points.

FIG. S1. Horizontal 2D slice of a NP anisotropy induced HEX
cylindrical phase. This colourmap displays the values of ψ.
Dark red areas indicate the placement of NEs.

3. Minkowski functionals: the Euler characteristic χE

The Minkowski functionals (MF) have been used to
determine the details of the BCP phase transition. The
MF provide useful information on the BCP geometry and
topological structure: volume, surface, curvature and the
Euler characteristic χE . All MFs are calculated for all
simulations but χE is found to provide the most rele-
vant information. We study the behaviours of these four

numbers as function of time generating a black and white
image from the density field of the matrix for every con-
figuration generated by the CDS program. As in our
previous papers, the implementation used here is adapted
from the work of Blasquez and Poiraudeau[16]. In their
publication and in particular in their eq.2 is also present
a very small misprint.[16] We describe the image as a
set of cubic voxels (set to 1 (black) for the image and 0
(white) for the background or for the seconf polymer).
The Minkowski functionals have been calculated for the
3D discretized object in the following way: the volume (V
= n3), the surface area (S = -6n3+ 2n2), the mean curva-
ture (2H = 3n3 - 2n2 + n1), and the Euler characteristic
(χE = -n3 + n2 - n1 + n0) where n3 is the number of
open cubes, n2 the number of open faces, n1 the number
of open edges and n0 the number of open vertices.[17, 18]
Following the Ref.[16] for each black voxel we examine
only the 13 neighbours called Nijk where i, j, k indicate
the position of the voxel in the box, and find the following
contributions ∆ni for a black voxel Nijk:

∆n2 = 3 +Q(i, j, k − 1) +Q(i, j − 1, k)

+ Q(i− 1, j, k) (14)

∆n1 = 3

+ Q(i, j, k − 1) ·Q(i, j − 1, k) ·Q(i, j − 1, k − 1)

+ Q(i, j, k − 1) ·Q(i+ 1, j, k − 1)

+ Q(i, j, k − 1) ·Q(i, j + 1, k − 1)

+ Q(i, j, k − 1) ·Q(i− 1, j, k) ·Q(i− 1, j, k − 1)

+ Q(i, j − 1, k) ·Q(i+ 1, j − 1, k)

+ 2 ·Q(i− 1, j, k)

+ Q(i− 1, j − 1, k) ·Q(i, j − 1, k) ·Q(i− 1, j, k)

+ Q(i, j − 1, k) (15)

∆n0 = 1 +Q(i− 1, j, k)

+ Q(i, j − 1, k) ·Q(i+ 1, j − 1, k)

+ Q(i− 1, j − 1, k) ·Q(i, j − 1, k) ·Q(i− 1, j, k)

+ Q(i, j, k − 1) ·Q(i+ 1, j, k − 1) ·Q(i+ 1, j − 1, k)

· Q(i, j + 1, k − 1)

+ Q(i− 1, j, k − 1) ·Q(i, j, k − 1) ·Q(i, j + 1, k − 1)

· Q(i− 1, j + 1, k − 1) ·Q(i− 1, j, k)

+ Q(i, j − 1, k − 1) ·Q(i+ 1, j − 1, k − 1)

· Q(i+ 1, j, k − 1) ·Q(i, j, k − 1)

· Q(i, j − 1, k) ·Q(i+ 1, j − 1, k)

+ Q(i− 1, j − 1, k − 1) ·Q(i, j − 1, k − 1)

· Q(i, j, k − 1) ·Q(i− 1, j, k − 1) ·Q(i− 1, j − 1, k)

· Q(i, j − 1, k) ·Q(i− 1, j, k) (16)

with Q(i,j,k)= 1-Nijk where Nijk = 1 for a black voxel
(object) and Nijk = 0 for a white voxel (background).
The total numbers ni are found by summation of ∆ni.
The algorithm walks along the voxel grid exploring the
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preceding neighbours: for the eqs: 14-16 we first run
index k, then j and finally i.

4. Auxiliary parameters

The autocorrelation function is calculated as

Cû(t) =
1

Np

Np∑
i=1

[û(t) · û(0)]2 (17)

The time autocorrelation of the NP orientations can
provide information regarding the dynamic orientational
relaxation.

C. Kinetic pathway of composite system

Further details on the kinetic pathway of the three
regimes (BCC spheres, COEXistence and HEXagonal
cylinders) are found in figure S2. In a) we display a
linear plot of χE in time, where the time scale of the
HEX phase is found to be extremely small, compared to
the rather slow COEX phase. The HEXagonal phase is
greatly accelerated by the cooperative initial orientation
of particles. NPs are breaking the symmetry at t = 0,
which facilitates the formation of the uni-axial domains.

Nonetheless, it is important to notice that figure S8
shows that a random but coherent initial orientation does
result in a similar χE profile with only a small variance,
ie, the initial direction plays a sub-dominant in the HEX
time scale.

The COEXistence phase in figure S2 a) is considerably
slower than the other two phases. This can be explained
as a consequence of the formation of grains with phase
HEX (high local concentration) and BCC (low local con-
centration). In a slower time scale these grains grow in
size (figure S3 and fig 3 c) in the main text).

FIG. S2. a) Time evolution of the Euler characteristic χE for
three representative regimes: BCC(ϕp = 0.0016), CX(ϕp =
0.006) and HEX(ϕp = 0.0098). The aspect ratio of the NE is
e = 1/8, with all the parameters corresponding to figure 1 (a)
in the main text. The χE curves are from a single simulation
run. In b) the autocorrelation of particle orientation. Snap-
shots of the system are provided in figure S3.

D. Role of NE length and shape

In the main text, figure 3 (a) we use NEs with length
2a/H0 = 1.44, comparable with the BCP periodicity.
The NE length 2a can be additionally compared with the
shortest distance between BCP interfaces, h = H0 −Rψ,
where the BCP sphere diameter is subtracted from the
BCC periodicity. In figure S4 we explore the phase
transition for shorter NEs with lengths 2a/H0 = 0.72
and 2a/H0 = 0.36, corresponding to 2a/h = 1.6 and
2a/h = 0.8, respectively. The NE aspect ratio is kept
e = 1/8. The system volume is re-scaled accordingly as
the BCP dimensions are increased. Comparing figure S4
with figure 3a in the main text, the transition can be seen
to persist for 2a/H0 = 0.72, where the BCP transitions
into χE ∼ 0 similarly as for longer NEs. Shorter NEs
with 2a/H0 = 0.36 continue to induce a clear decrease in
the number of BCP domains, into a more connected mor-
phology, but its effect is less drastic and is considerably
smoother. This can be attributed to the reduced impact
of shorter NEs, as will be discussed in section G and fig-
ure S11. Figure S4 allows to characterise the reported
transition as belonging to intermediately sized NEs with
lengths 2a comparable or smaller with respect to the BCP
periodicity. Larger NEs can be expected to introduce
large distortions in the BCP mesophase directly via its
inclusion in the system, as cannot be accommodated into
the BCP structure. On the other hand, much shorter
NEs can be expected to induce modifications in the BCP
via its collective aggregation.
Equation 9 describes the generalised shape of a super-

ellipse (ellipsoid, cuboid ...). In this work we have focused
on the role of anisotropy of ellipsoids, as they allow for a
well-defined repulsive interaction (based on the standard
Gay-Berne potential) as well for the ability to recover
the spherical shape in the case of aspect ratio e = 1.
Nonetheless, the presented model allows to simulate NPs
of generalised shape, in the absence of colloid-colloid in-
teraction. Figure S5 shows that the phase transition
mechanism is relatively generic, occurring for a variety
of NP shapes. Even though the colloid-colloid interac-
tion is not considered in these simulations, instances of
overlapping can be considered negligible at such low con-
centrations. The persistence of the phase transition for
generic NP shape suggests that the transition is generic
and only requires highly anisotropic NPs to be triggered.

E. Further details on the discussion regarding
equilibrium

We repeat the same simulation setup as in figure 1 in
the main text, with a random initial orientation of each
NPs, that is, the initial orientation of each NP is uncor-
related with the rest of the NPs. The NP position is
similarly random, as in figure 1 in the main text. Figure
S7 shows the Euler characteristic for a system of NSs and
NEs with e = 1/8. A totally disordered initial distribu-
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FIG. S3. Snapshots representatives of the three regimes: BCC(ϕp = 0.0016), CX(ϕp = 0.006) and HEX(ϕp = 0.0098). The
time step is shown above each snapshot. The simulations correspond to the χE curve in figure S2.
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FIG. S4. BCC sphere to HEX cylinder phase transition in-
duced by smaller NE length 2a/H0 = 0.72 and 2a/H0 = 0.36,
characterised by the Euler characteristic χE , for a fixed as-
pect ratio e = 1/8. The system volume is re-scaled as the
BCP dimensions are increased.

FIG. S5. Anisotropy-induced phase transition for several
shapes beyond the spheroid used in the main text, for a fixed
aspect ratio e = 1/8. Two volume fractions are considered
below and above the critical one: ϕp = 0.01 and ϕp = 0.015,
respectively. The shape of the NP is controlled by the super-
ellipse exponent n, which isosurfaces are shown for relevant
values of n, spanning from prolate ellipsoids to cuboids.

tion of orientations in figure S7 has shown that the mor-
phology of the BCP is different depending on the aspect
ratio of the NP, at the same NP loading. Nonetheless,
the final state is clearly relatively disordered, without any
clear global orientation. We can explain this as each NP
is creating a local preferential direction for the BCP to
orient. Reorienting all the different orientational grains
into a global nematic-like order requires to overcome sev-
eral local energetic barriers to reorient each orientation
domain. For this reason, it would require an excessive
computational time to achieve a global orientation. Set-
ting an initial coherent nematic-like orientation of NPs
can help achieve the global ordering in a shorter time
scale.

In figure S8 we perform 15 simulations where the global
orientation of all NPs is random but coherent, that is, in

FIG. S6. 3D and top view of the coexistence of BCC and
HEX phase in a moderate concentration ϕp = 0.01 of NEs
with aspect ratio e = 1/8. The NPs are initially segregated
into the right half of the system, which evolves into the HEX
phase, while the left half (devoid of NPs) maintains the BCC
phase.

each simulation every NP has the same orientation. To
clarify, the difference with figure S7 is that in this set
the orientation of all NPs is equal but random at t = 0,
for each simulation run. Figure S8 we show the cloud
of points corresponding to the value of χE over time for
each simulation run. Additionally, we show the averaged
< χE > over all simulations. This provides informa-
tion regarding the variability depending on the choice of
initial orientation, suggesting that there is nothing ex-
tremely particular about the Z axis in the simulations of
the main text. Instead, the equilibrated χE ∼ 0 value is
reached at in a similar time scale, regardless of the ini-
tial orientation. Contrasting figure S7 and S8 the main
conclusion one can obtain is that the energetic cost as-
sociated with obtaining a global coherent orientation is
considerably high. By initially aligning all NPs along a
particular direction (main text and figure S8 ) we can ob-
tain the equilibrium morphologies in an accessible time
scale. The problem of obtaining globally ordered BCPs is
ubiquitous in experiments and simulations. To this end,
external fields have been widely used.

The existence of a coexistence phase, as well as the
highly metastability of block copolymer melts suggests
the possibility of a memory effect on the transition that
is described in this work. The hysteresis-like curve in fig-
ure S9 shows the same χE vs ϕp as in figure 3a in the
main text, but considering two distinct initial BCP con-
ditions: cylinders to spheres, by employing a cylindrical
phase as the initial condition and reducing the concen-
tration of particles in each simulation (this simulations
are essentially a restart of both the colloidal and poly-
meric state of cylindrical phase simulation in figure 3a
in the main text), and spheres to cylinders by restart-
ing a BCC simulation with randomly placed NEs. The
system is immediately subjected to a small annealing pe-
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FIG. S7. Euler characteristic time evolution for nanoellipses and nanospheres, with an initially disordered configuration for the
NPs. All the parameters are the same as in figure 1 in the main text.

FIG. S8. Euler characteristic χE shown for 15 different simulation runs. For each simulation the orientation of all NPs is set to
a single direction. In a thick line we show the averaged value of χE over all the independent runs. 3 random initial orientations
are shown as examples of the final snapshot.
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FIG. S9. Effect of the initial condition in the χE − ϕp

curve (same parameters as in figure 3a in the main text).
Two distinct initial conditions are chosen: S → C the BCP
is initialised as a BCC sphere phase and particles are ran-
domly placed. For the C → S the BCP is initialised as
HEX cylinders. The red/blue arrows indicate the process of
adding/removing NPs from the system at t = 0. A moderate
annealing period is used to facilitate the equilibration of the
system.

riod during 5 × 104 steps for the system to equilibrate:
a moderate noise ηnoise = 0.1 is introduced in the Cahn-
Hilliard-Cook equation following the work by Ball et al
[3]. After relaxation the system clearly conserves mem-
ory of the initial condition, with a histeresis-like loop
with a distinct pathway depending on the initial condi-
tion, which is different from the initially-disordered curve
in figure 3a. The placement of the critical concentrations
are shifted, depending on the initial condition of the BCP,
which suggests the memory of the system with respect to
the initial condition.

F. Phase transition driven by minority-compatible
ellipsoids

While this work is devoted to phase transitions induced
by anisotropic majority-compatible NPs, minority com-
patible additives have been widely shown to induce BCP
phase transitions, due to their ability to modify the effec-
tive composition of the system, ie, to increase the over-
all concentration of their hosting BCP phase. In fact,
majority-compatible NPs are used throughout this work
to be able to avoid other known BCP transition mecha-
nism to mask the role of anisotropy.

In this section we study the effect of minority-
compatible NPs within BCP domains. Figure S10 (a)
shows the effect of a concentration ϕp of NEs in a similar
setup as figure 3 (a) in the main text. While the reduc-
tion of the initial value of χE is consistent with figure 3
(a), the mechanism behind it is considerably different:
Even at very low concentrations, minority-compatible

NEs are reducing the value of χE , displaying no criti-
cal value before which χE is constant. Contrary to that,
as more NEs are added into the system, more spheri-
cal domains are disturbed into elongated domains due to
the inclusion of anisotropic NPs. This is in sharp con-
trast with the mechanism described in the main text.
Here, the change in χE is gradual and due to the size
of the NP, not exclusively due to the NP shape. More-
over, an effective BCP composition can be defined[19] as
feff = ϕp + (1 − ϕp)f0 which captures the growth of
the hosting BCP phase. Comparing the pure BCP crit-
ical composition fBCC−HEX

0 ≈ 0.41 in figure S10 (b),
we can observe that the effective BCP composition in (a)
remains below the critical value. This concludes that the
transition shown in (a) is primarily due to the large size
of the NP, and not to the shape (as opposed to the main
text) or the volume fraction (as shown in previus works
with isotropic small NPs [19] ).
The phase diagram in figure S10 (b) can be compared

with figure 5 in the main text showing an enhanced co-
existence region, but a reduced effect in the BCC-HEX
transition, which only occurs for f ∼ 0.41, near the neat
BCP transition.

G. Discussion on the origins of the phase transition

As discussed in the main text, the origin of the
anisotropy-driven phase transition can be traced back to
the distortion introduced by the NE shape, which is en-
hanced in the weak segregation regime of the BCP, and
which introduces a preferential direction via ψc when the
NP is non-spherical. Exploring the role of the segrega-
tion regime via χN involves spanning over several BCP
phases, unless the symmetric BCP is chosen, in which the
BCP morphology remains lamellar regardless of the seg-
regation regime, above the order-disorder transition[20].
Therefore, in figure S11 (a), the coupling free energy is
shown as a function of the Flory-Huggins parameter χN
for a symmetric BCP f0 = 0.5. After relaxation, Fcpl
is averaged over time for different values of parameter
B (see equation 5b), controls the degree of segregation
N . The overall value of Fcpl decreases rapidly with the
segregation regime, which results from the decrease in
(ψ − ψ0)

2
as the ψ profile reaches pure monomer-A and

pure monomer-B concentrations in the bulk domains.
Furthermore, the coupling free energy can be shown

to play a crucial role in the BCC-HEX phase transition.
Figure S11 (b) shows the phase transition in terms of
the scaling of the free energy σ, which sets the strength
of the coupling free energy, for a volume fraction of NE
ϕp = 0.015, ie , above the critical volume fraction iden-
tified in figure 2 (a) in the main text. The Euler char-
acteristic χE signals the transition from a BCC spher-
ical morphology(χE >> 1) to a HEX cylindrical phase
(χE ≈ 0), as the overall importance of the coupling free
energy is increased with σ. We can identify an approxi-
mate critical coupling strength σ∗ ∼ 0.25. Additionally,
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FIG. S10. Effect of minority-compatible ellipsoids (e = 1/8) in a BCC-forming BCP. In (a) the χE(ϕp) curve is shown for a
BCC-forming BCP with f0 = 0.4, which can be compared with figure 3 (a) in the main text. Contrary to previous curves,
the Euler characteristic χE is scaled with the system volume V to be able to compare different system sizes. In (b) the Euler
characteristic for the neat BCP (ϕp = 0) is shown for the transition in f0, along with effective feff in the presence of a
concentration ϕp of minority-compatible NPs. In (c) the phase diagram for f0 − ϕp is shown, with red circles for BCC phase,
blue squares for HEX cylinders and yellow diamonds for mixed states. A snapshot is shown in (d).

the free energy profile scaled with the coupling strength

Fcpl/σ =

∫
drψc [ψ(r)− ψ0]

2
(18)

is shown to decrease with σ, indicating that the bulk val-
ues in the percolating phase of the BCP profile are ap-
proaching the pure monomer concentration, ie , ψ → ψ0.

Finally, a change in the scaling of Fcpl/σ ∝ σν is observed
depending on the BCP phase. The change in the fitted
exponent ν indicates that the distortion introduced by
Fcpl is more easily alleviated in the HEX phase (χE ≈ 0,
σ > σ∗) than in the BCC phase (χE >> 1, σ < σ∗), as
the quantity Fcpl/σ decreases more rapidly in the HEX
(ν ≈ −1) than in the BCC phase (ν ≈ −0.42).
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