Supporting Information for

Three-dimensional lattice deformation of blue phase liquid crystals under electrostriction

Yuxian Zhang,^a Hiroyuki Yoshida, ^{b*} Fan Chu,^a Yu-Qiang Guo,^a Zhou Yang,^c Masanori Ozaki^b and Qiong-Hua Wang^{a*}

a. School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China.

b. Division of Electrical, Electronic and Infocommunications Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.

c. Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

Corresponding authors

H. Yoshida: yoshida@eei.eng.osaka-u.ac.jp

Q.-H. Wang: qionghua@buaa.edu.cn

Optical texture of the intermediate "quasi-tetragonal" phase

Fig. S1 POM images of the BP I(110) twinning sample, showing the phase transitions of orthorhombic (*E*=1.44 V/μm)→quasi-tetragonal (*E*=1.53~1.58 V/μm)→tetragonal

(*E*=1.63 V/μm).

Discontinuous lattice elongation along the field

Fig. S2 POM images and reflection spectrum of BP I crystals at varied field intensities. The gradual transition of the POM texture and the discrete redshift of reflection peaks indicate the discontinuous elongation of BP I lattice along the field direction.

Fig. S3 Reflection spectrum of tetragonal BP I crystals respectively at *E*=1.63, 1.72 and 2.05 V/μm (Cell thickness: d=5.6 μm). The Bragg peak wavelength at each field intensity is obtained by fitting Gaussian function.

Spectra of BP I(110) crystals confined in a 14.9 μm-thick cell

Fig. S4 Transmission spectra of the BP I(110) crystals confined in a 14.9 μm cell.

l \bar{I} 10] $/$ θ =72° $E=0 V/um$ E=0.05 V/um θ = 72° E=0.09 V/um θ = 72° Bisector $[\overline{1}10]$ of $\theta \rightarrow$ β = 31° β = 31° Easy axis $\beta = 31$ ° E=0.14V/um θ = 72° E=0.19 V/um θ = 72° E=0.23 V/um θ = 72° $\sqrt{\beta} = 31^{\circ}$ β = 31° β = 31° E=0.33 V/um E=0.37V/um θ = 72° θ = 72° θ = 72° E=0.28 V/um β = 31° $3 = 31^\circ$ β = 31° E=0.42 V/um E=0.51 V/um E=0.47 V/um θ = 73° θ = 72.0° θ = 72°

Raw Kossel pattern data under varying field intensities

 $3 = 31$

 β = 31°

 $3 = 31$

Fig. S5 Kossel diagrams of the BP I(110) twinned crystals under varied electric-field intensities, where the angle β indicates the lattice direction. The overlap angle θ is measured at each diagram to calculate *a and b*, the lattice constants perpendicular to the field.

Accuracy calculation of the lattice constant measurement

In this work, we use Equations $(2)-(4)$ to calculate the three-dimensional lattice constants:

$$
c = \lambda / n
$$
 (2)

$$
b = \sqrt{\frac{V_0}{c \tan(\theta/2)}}
$$
 (3)

$$
a = b \tan(\theta/2)
$$
 (4)

The main error comes from the overlap angle (θ) measurement that affect the accuracy of *a* and *b* in the field-perpendicular direction, and the field-induced variation of refractive index (*n*) of BPs that affect the accuracy of *c* along the field direction.

(1) The overlap angles in Kossel diagram are measured by the screen protractor as follows in Figure S5, with the accuracy of 1' for each $\left[110\right]$ axis. Considering the $\left[110\right]$ axes are manually drawn, we set the error to $\pm 0.5^{\circ}$ for the $\left[110\right]$ axis and thus, the accuracy of measurement overlap angle θ is within $\pm 1^{\circ}$.

Fig. S6 Measuring the overlap angle θ in a Kossel diagram.

During the electrostriction, θ is measured as 72° to 90° and $V_E = V_0 = c_0^3 \tan(\theta_0/2)$.

For θ =72° at E=0, the estimated values perpendicular to the field are *a*=282 nm, *b*=386 nm.

If we use $\theta = 71^\circ$, the values turn to be $a = 275$ nm, $b = 386$ nm. **(** $\Delta max = -7$ **nm)** If we use $\theta = 73^{\circ}$, the values turn to be $a = 286$ nm, $b = 386$ nm. (Δ max = 4 nm)

For θ =89.5° at E=2.05 V/µm, the estimated values are $a=318$ nm, $b=321$ nm. If we use $\theta = 88.5^\circ$, the values turn to be $a = 315$ nm, $b = 323$ nm. (Δ max= -3 nm) If we use θ =90.5°, the values turn to be a =320 nm, b =317 nm. (Δ max= -4 nm)

For θ =79° at E=1.44 V/µm, the estimated values are a =301 nm, b =362 nm. If we use θ =78°, the values turn to be *a*=296 nm, *b*=366 nm. (Δ max = -5 nm) If we use $\theta = 80^\circ$, the values turn to be $a = 301$ nm, $b = 359$ nm. (Δ max= 3 nm)

Because *c* is calculated from Bragg peak wavelength, the error comes from the angle measurement is within \pm 7 nm.

(2) For the refractive index, since the field variation is less than 0.01 and *n*=1.58 was used in the main text, here we use $n=1.59$ and $n=1.57$ for $c=\lambda/n$:

At E=0, *λ*=610 nm, *n*=1.58 and *c*=386 nm;

if *n*=1.59, *c*=384 nm

if *n*=1.57, *c*=389 nm

(Δmax= 3 nm)

At E=1.72 V/μm, *λ*=628 nm, *n*=1.58 and *c*=397 nm;

if *n*=1.59, *c*=395 nm

if *n*=1.57, *c*=400 nm

(Δmax= 3 nm)

At E=2.05 V/μm, *λ*=651 nm, *n*=1.58 and *c*=412 nm;

if *n*=1.59, *c*=409 nm

if *n*=1.57, *c*=415 nm

(Δmax= 3 nm)

When we calculate *a* and *b*, we use the value of c directly, so the error caused by refractive index is within ± 3 nm.

To sum up, the accuracy for the lattice constant measurement is at least within ± 10 nm.