Supporting Information for

Three-dimensional lattice deformation of blue phase liquid crystals under electrostriction

Yuxian Zhang,^a Hiroyuki Yoshida,^{b*} Fan Chu,^a Yu-Qiang Guo,^a Zhou Yang,^c Masanori Ozaki^b and Qiong-Hua Wang^{a*}

a. School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China.

b. Division of Electrical, Electronic and Infocommunications Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.

c. Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

Corresponding authors

H. Yoshida: yoshida@eei.eng.osaka-u.ac.jp

Q.-H. Wang: qionghua@buaa.edu.cn

Optical texture of the intermediate "quasi-tetragonal" phase

Fig. S1 POM images of the BP I₍₁₁₀₎ twinning sample, showing the phase transitions of orthorhombic ($E=1.44 \text{ V/}\mu\text{m}$) \rightarrow quasi-tetragonal ($E=1.53\sim1.58 \text{ V/}\mu\text{m}$) \rightarrow tetragonal

(*E*=1.63 V/µm).

Discontinuous lattice elongation along the field

Fig. S2 POM images and reflection spectrum of BP I crystals at varied field intensities. The gradual transition of the POM texture and the discrete redshift of reflection peaks indicate the discontinuous elongation of BP I lattice along the field direction.

Fig. S3 Reflection spectrum of tetragonal BP I crystals respectively at E=1.63, 1.72 and 2.05 V/µm (Cell thickness: d=5.6 µm). The Bragg peak wavelength at each field intensity is obtained by fitting Gaussian function.

Spectra of BP I(110) crystals confined in a 14.9 µm-thick cell

Fig. S4 Transmission spectra of the BP $I_{(110)}$ crystals confined in a 14.9 μ m cell.

Raw Kossel pattern data under varying field intensities

Fig. S5 Kossel diagrams of the BP $I_{(110)}$ twinned crystals under varied electric-field intensities, where the angle β indicates the lattice direction. The overlap angle θ is measured at each diagram to calculate *a* and *b*, the lattice constants perpendicular to the field.

Accuracy calculation of the lattice constant measurement

In this work, we use Equations (2)-(4) to calculate the three-dimensional lattice constants:

$$\begin{cases} c = \lambda / n & (2) \\ b = \sqrt{\frac{V_0}{c \tan(\theta/2)}} & (3) \\ a = b \tan(\theta/2) & (4) \end{cases}$$

The main error comes from the overlap angle (θ) measurement that affect the accuracy of *a* and *b* in the field-perpendicular direction, and the field-induced variation of refractive index (*n*) of BPs that affect the accuracy of *c* along the field direction.

The overlap angles in Kossel diagram are measured by the screen protractor as follows in Figure S5, with the accuracy of 1' for each [110] axis. Considering the [110] axes are manually drawn, we set the error to ±0.5° for the [110] axis and thus, the accuracy of measurement overlap angle θ is within ±1°.

Fig. S6 Measuring the overlap angle θ in a Kossel diagram.

During the electrostriction, θ is measured as 72° to 90° and $V_E = V_0 = c_0^3 \tan(\theta_0/2)$.

For $\theta = 72^{\circ}$ at E=0, the estimated values perpendicular to the field are a=282 nm, b=386 nm.

If we use $\theta = 71^\circ$, the values turn to be a = 275 nm, b = 386 nm. ($\Delta max = -7$ nm) If we use $\theta = 73^\circ$, the values turn to be a = 286 nm, b = 386 nm. ($\Delta max = 4$ nm) For θ =89.5° at E=2.05 V/µm, the estimated values are *a*=318 nm, *b*=321 nm. If we use θ =88.5°, the values turn to be *a*=315 nm, *b*=323 nm. (Δ max= -3 nm) If we use θ =90.5°, the values turn to be *a*=320 nm, *b*=317 nm. (Δ max= -4 nm)

For θ =79° at E=1.44 V/µm, the estimated values are *a*=301 nm, *b*=362 nm. If we use θ =78°, the values turn to be *a*=296 nm, *b*=366 nm. (Δ max = -5 nm) If we use θ =80°, the values turn to be *a*=301 nm, *b*=359 nm. (Δ max= 3 nm)

Because *c* is calculated from Bragg peak wavelength, the error comes from the angle measurement is within ± 7 nm.

(2) For the refractive index, since the field variation is less than 0.01 and n=1.58 was used in the main text, here we use n=1.59 and n=1.57 for $c=\lambda/n$:

At E=0, *λ*=610 nm, *n*=1.58 and *c*=386 nm;

if *n*=1.59, *c*=384 nm

if *n*=1.57, *c*=389 nm

 $(\Delta max = 3 nm)$

At E=1.72 V/ μ m, λ =628 nm, *n*=1.58 and *c*=397 nm;

if *n*=1.59, *c*=395 nm

if *n*=1.57, *c*=400 nm

 $(\Delta max = 3 nm)$

At E=2.05 V/ μ m, λ =651 nm, n=1.58 and c=412 nm;

if *n*=1.59, *c*=409 nm

if *n*=1.57, *c*=415 nm

 $(\Delta max = 3 nm)$

When we calculate a and b, we use the value of c directly, so the error caused by refractive index is within ± 3 nm.

To sum up, the accuracy for the lattice constant measurement is at least within ± 10 nm.