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Optical texture of the intermediate “quasi-tetragonal” phase
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Fig. S1 POM images of the BP I(110) twinning sample, showing the phase transitions

of orthorhombic (E=1.44 V/um)—quasi-tetragonal (£=1.53~1.58 V/um)—tetragonal

(E=1.63 V/um).

Discontinuous lattice elongation along the field
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Fig. S2 POM images and reflection spectrum of BP I crystals at varied field
intensities. The gradual transition of the POM texture and the discrete redshift of
reflection peaks indicate the discontinuous elongation of BP I lattice along the field

direction.
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Fig. S3 Reflection spectrum of tetragonal BP I crystals respectively at £=1.63, 1.72
and 2.05 V/um (Cell thickness: d=5.6 um). The Bragg peak wavelength at each field

intensity is obtained by fitting Gaussian function.
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Fig. S4 Transmission spectra of the BP I(110) crystals confined in a 14.9 um cell.



Raw Kossel pattern data under varying field intensities
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Fig. S5 Kossel diagrams of the BP I(110) twinned crystals under varied electric-field
intensities, where the angle f indicates the lattice direction. The overlap angle 8 is
measured at each diagram to calculate a and b, the lattice constants perpendicular to

the field.

Accuracy calculation of the lattice constant measurement

In this work, we use Equations (2)-(4) to calculate the three-dimensional lattice

constants:
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The main error comes from the overlap angle () measurement that affect the accuracy

of @ and b in the field-perpendicular direction, and the field-induced variation of

refractive index (n) of BPs that affect the accuracy of ¢ along the field direction.

(1) The overlap angles in Kossel diagram are measured by the screen protractor as
follows in Figure S5, with the accuracy of 1” for each [110] axis. Considering the
[110] axes are manually drawn, we set the error to £0.5° for the [110] axis and thus,

the accuracy of measurement overlap angle 6 is within +1°.
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Fig. S6 Measuring the overlap angle 6 in a Kossel diagram.

During the electrostriction, 6 is measured as 72° to 90° and V¢ =V, =c,’ tan(6,/2).
For 6=72° at E=0, the estimated values perpendicular to the field are a=282 nm,
b=386 nm.

If we use 6=71°, the values turn to be =275 nm, »=386 nm. (Amax = -7 nm)

If we use 6=73°, the values turn to be a=286 nm, »=386 nm. (Amax =4 nm)



For 6=89.5° at E=2.05 V/um, the estimated values are =318 nm, »=321 nm.
If we use 6=88.5°, the values turn to be a=315 nm, »=323 nm. (Amax= -3 nm)

If we use 6=90.5°, the values turn to be ¢=320 nm, »=317 nm. (Amax= -4 nm)

For 6=79° at E=1.44 V/um, the estimated values are =301 nm, »=362 nm.
If we use 8=78°, the values turn to be a=296 nm, b=366 nm. (Amax = -5 nm)

If we use 6=80°, the values turn to be =301 nm, »#=359 nm. (Amax= 3 nm)

Because c is calculated from Bragg peak wavelength, the error comes from the angle

measurement is within +7 nm.

(2) For the refractive index, since the field variation is less than 0.01 and n=1.58 was

used in the main text, here we use n=1.59 and n=1.57 for c=A/n:
At E=0, A=610 nm, »n=1.58 and ¢=386 nm;
if n=1.59, ¢=384 nm
1f n=1.57, c=389 nm
(Amax= 3 nm)
At E=1.72 V/um, 4=628 nm, n=1.58 and ¢=397 nm;
1f n=1.59, ¢c=395 nm
if n=1.57, c=400 nm
(Amax= 3 nm)
At E=2.05 V/um, =651 nm, n=1.58 and c=412 nm;
if n=1.59, c=409 nm
if n=1.57, c=415 nm

(Amax= 3 nm)



When we calculate @ and b, we use the value of ¢ directly, so the error caused by

refractive index is within +3 nm.

To sum up, the accuracy for the lattice constant measurement is at least within £10 nm.



