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EXPERIMENTAL SECTION

Material. Poly(mercaptopropyl)methylsiloxane oligomer (PMMS, 75-150 cSt) was purchased 

from Gelest and used as received. The studied PMMS is characterized by the molecular 

weight, MnSEC=2.4 kg/mol, and dispersity, Đ=1.26 (as determined by Viscotek TDA 305 

triple detection, THF as eluent)1. Poly(methylphenylsiloxane) (PMPS) of molecular weights, 

Mn = 2530 g/mol and Đ=1.4 was purchased from Polymer Source Inc. 2 The 

poly(methylmercaptopropyl)-grafted-hexylmethacrylate, PMMS-g-HMA was synthesized 

according to the following procedure. PMMS (0.25 g, 0.05 mmol), nHMA (0.5 g, 2.94 mmol) 

and DMPA (0.09 g, 0.36 mmol) were dissolved in THF (2 mL). The solution was purged 

under nitrogen and purified by one freeze-pump-thaw cycle. Next, the flask was stirred for 

160 min under UV irradiation, and then THF was evaporated under vacuum. The polymer 

was purified by washing many times first in methanol/water mixture and then methanol. The 

purified sample was dried to a constant mass under reduced pressure. The structure of 

obtained PMMs-g-HMA was verified by NMR experiments. Note that NMR spectra were 

recorded on using 500 MHz spectrometer (Bruker) for samples in commercially available 

DMSO-d6. The results are presented below.
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Fig S1. 1H NMR spectrum of commercially available PMMS. 
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Fig S2. (a) 1H NMR spectrum of PMMS-graft-PHMA, (b) 13C NMR spectrum of PMMS-
graft-PHMA
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The nanoporous silica membranes were prepared by electrochemical etching of silicon wafers 

and subsequent thermal oxidation3,4. In the experiment, we used silica templates of d = 8nm 

and d = 4 nm. The pore size distribution of self-made silica templates was confirmed by 

measuring the nitrogen adsorption/desorption isotherms, see Ref. 5.

Sample preparation/Infiltration procedure. Prior to filling, porous membranes were dried 

in an oven at T = 423 K under vacuum to remove any volatile impurities from the 

nanochannels. After cooling, they were placed in PMMS or PMPS. Then, the whole system 

was maintained at T = 303 K in a vacuum (10-2 bar) for t = 24 h to let the compound flow into 

the nanocavities. After completing the infiltration process, the surface of silica membrane was 

dried and the excess sample on the porous surface was removed by use of metal blade and 

paper towel. The complete filling was obtained by weighing the templates before and after 

each infiltration to constant mass. 

X-ray diffraction (XRD). XRD data were collected on a Rigaku Denki D/Max Rapid II 

diffractometer equipped with a rotating Ag anode, an incident beam graphite (002) 

monochromator and an image plate in the Debye-Scherrer geometry as a detector. The 

investigated bulk samples were packed into glass capillaries with a diameter of 1.5 mm and 

wall thickness of 0.01 mm. The diffraction intensity for the empty capillary was then 

subtracted. The X-ray beam size at the sample was 0.3 mm. 2D diffraction pattern was 

azimuthally integrated and converted into one-dimensional function of intensity versus the 

scattering vector,  , where:  is the scattering angle and  = 0.5608 Å is the 𝑞 = 4𝜋𝑠𝑖𝑛𝜃/𝜆 2𝜃 𝜆

wavelength of the incident X-ray beam. Next, the obtained intensity function was corrected 

for background, polarization, absorption, incoherent Compton scattering, and normalized to 

the electron units. After the data correction, the experimental structure factor, , was 𝑆𝑒𝑥𝑝(𝑞)

computed as:

𝑆𝑒𝑥𝑝(𝑞) =  
𝐼(𝑞) ‒ ( < 𝑓2 > ‒< 𝑓 > 2)

< 𝑓 > 2

where:  is the coherently scattered intensity, normalized to electron units, , 𝐼(𝑞)
< 𝑓2 > =

𝑛

∑
𝑖 = 1

𝑐𝑖𝑓
2
𝑖

 ,  and  are the concentration and the atomic scattering factor of the -th 
< 𝑓 > =

𝑛

∑
𝑖 = 1

𝑐𝑖𝑓𝑖
𝑐𝑖 𝑓𝑖 𝑖

atomic species, respectively, and  is the number of atomic species in the sample. The -𝑛 𝑄

function of scattering intensity for the separate PMMS in nanopores was derived from a 
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difference between the normalized scattering intensity for the confined system and the empty 

porous matrix6.

NUMERICAL MODELLING SECTION

Model and simulation methodology. Molecular dynamics simulations of oligomers in a bulk 

and in a cylindrical nanopore were performed at coarse-grained resolution using bead-spring 

model where monomers were represented by spheres. In our simulations, the backbone of an 

oligomer was composed of  beads. To mimic architecture of PMMS and PMPS side 𝑁𝑏 = 10

chains, each backbone monomer was also connected to a single side bead, i.e., . The 𝑁𝑠 = 1

total number of beads in an oligomer molecule was . The non-bonded 𝑁 = 𝑁𝑏 + 𝑁𝑏𝑁𝑠 = 20

interactions between beads, separated by a distance , were modeled by the truncated and 𝑟 

shifted Lennard-Jones (LJ) potential

(Eq. 1)
𝑉𝐿𝐽(𝑟) = { 4𝜖 [(𝜎 𝑟)12 ‒ (𝜎 𝑟)6 + (𝜎 𝑟𝑐)12 ‒ (𝜎 𝑟𝑐)6]        𝑟 ≤ 𝑟𝑐𝑢𝑡

0                                                                                           𝑟 > 𝑟𝑐𝑢𝑡,�
where  and  are respectively the units of energy and length and  is the potential cutoff 𝜖 𝜎 𝑟𝑐𝑢𝑡

distance. We take  and . The latter is in units of thermal energy  with  being the 𝜎 = 1 𝜖 = 1 𝑘𝑇 𝑘

Boltzmann’s constant. The bead-bead interactions were modeled via a purely repulsive LJ 

potential with a cutoff . The bonded interactions in an oligomer were mimicked by 𝑟𝑐𝑢𝑡 = 21/6𝜎

the Kremer-Grest potential,7,8 1,2 , with the “finite extensible 𝑉𝐾𝐺(𝑟) = 𝑉𝐹𝐸𝑁𝐸(𝑟) + 𝑉𝐿𝐽(𝑟)

nonlinear elastic" (FENE) potential

. (Eq. 2)
𝑉𝐹𝐸𝑁𝐸 =‒

1
2

𝑘𝐹𝑟2
𝐹 𝑙𝑛[1 ‒ (𝑟 𝑟𝐹)2]

In (Eq. 2) the bond spring-constant is , and the maximum bond length is . 𝑘𝐹 = 30𝜖/𝜎2 𝑟𝐹 = 1.5𝜎

In our experiments we utilized polymers with low molecular weights, i.e., with contour length 

smaller than their persistence length. Consequently, individual oligomeric molecules are 

expected to be rather stiff. In simulations the stiffness of oligomeric chains was introduced by 

a bond-bending potential which acts on three consecutive backbone beads.  The bending 

potential reads

, (Eq. 3)𝑉𝐵 = 𝑘𝐵[1 ‒ cos (𝜃𝑖𝑗𝑘)⁡]



S6

In the equation above,  is bending stiffness and  is the angle between the two subsequent 𝑘𝐵 𝜃𝑖𝑗𝑘

backbone bond vectors  and , where vectors  and  denote positions of 𝑏⃗𝑖 ≡ 𝑟⃗𝑖 + 1 ‒ 𝑟⃗𝑖 𝑏⃗𝑖 + 1 𝑟⃗𝑖 + 1 𝑟⃗𝑖

two consecutive backbone beads.

In simulations, we also constrained planarity of molecules via four-bead torsional potential 

. (Eq. 4)𝑉𝑇 = 𝑘𝑇[1 + cos (𝜑𝑖𝑗𝑘𝑙)]

In (Eq.4)  is torsional stiffness and   is the dihedral angle which is defined between 𝑘𝑇 𝜑𝑖𝑗𝑘𝑙

three consecutive bond vectors ,  and  connecting side-backbone, backbone-𝑏⃗𝑖 ‒ 2 𝑏⃗𝑖 ‒ 1 𝑏⃗𝑖

backbone and backbone-side beads, respectively. We carried out simulations for three 

molecular models of oligomers with different bending and torsional interactions. We denoted 

these models, as model I, II and III. In model I oligomers have flexible backbones and side 

beads. In model II we consider stiff backbones and flexible side beads, whereas in model III 

incorporates stiff backbones and planar side beads. The latter feature in model III is due to 

torsional interactions. Table 1 summarizes all parameters incorporated in all models that were 

utilized in our study. 

Model 𝑘𝐵/𝜖 𝑘𝑇/𝜖

I 0 0

II 100 0

III 100 10

Table 1. Summary of model parameters used for coarse-grained molecular simulations of 

oligomers.  and  are bending and torsional stiffness from (Eqs. 3) and (4), respectively.𝑘𝐵 𝑘𝑇

Newton’s equations of motion were solved using a velocity Verlet algorithm. A 

Langevin damping term with damping  was used, where  is the LJ time 𝜁 = 0.5𝑚𝜏 ‒ 1 𝜏 = 𝑚𝜎2 𝜖

unit and  is the bead mass. The integration step was taken to be , and the 𝑚 = 1 Δ𝜏 = 0.002𝜏

thermal energy was constant at . All simulations were carried out using the Large-scale 𝑘𝐵𝑇 = 𝜖

Atomic/Molecular Massively Parallel Simulator (LAMMPS),9 and simulation snapshots were 

rendered using the program Visual Molecular Dynamics (VMD).10

Simulations in a bulk were performed in a cubic box of length  at melt number density𝐿

. We imposed periodic boundary conditions in all spatial dimensions. All systems  0.85𝜎 ‒ 3

contained  oligomers. As a starting configuration, we used oligomers placed 𝑀 = 3500

randomly in a simulation cell. Oligomers were generated using a self-avoiding random walk 
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technique. The initial density for all systems was low . To obtain the bulk density, ≈  10 ‒ 4𝜎 ‒ 3

the simulation box was gradually decreased in size at constant velocity . Once the 10 ‒ 3𝜎𝜏 ‒ 1

target density was reached, simulations were continued in order to obtain equilibrium bulk 

morphology. This final part of simulation was running for at least three relaxation times  of 𝜏𝑅

the corresponding system, where  is defined as the relaxation time of the backbone end-to-𝜏𝑅

end distance autocorrelation function. 

The cylindrical pore was modeled as structureless, impenetrable and repulsive rigid 

wall. We assume bead-wall interactions of the same form as in (Eq. 1). The only differences 

are choosing cylindrical coordinates and replacing  by  in (Eq. 1), where  is cylinder 𝑟 𝐷/2–𝑟 𝐷

diameter. These simulations were conducted for  oligomeric chains. We applied 𝑀 = 2400

periodic boundary conditions along the cylinder axis. Initially chains were distributed 

randomly inside a cylindrical volume with large diameter and height corresponding to low 

density .  Subsequently, the diameter of the pore was gradually decreased to the 5·10 ‒ 3𝜎 ‒ 3

effective value .  This reduction in diameter size is due to wall depletion which 𝐷0 = 𝐷 ‒ 21/6𝜎

restricts the space available for confined oligomers. In the following step, the cylinder height 

was adjusted to achieve the final density , the same as in the bulk simulations. Finally, 0.85𝜎 ‒ 3

simulation was followed by a production run lasting .106𝜏

By taking time and ensemble averages over equilibrium configurations, denoted here 

symbolically as , several quantities of interest were sampled. Similarly, to our experiments, 〈…〉

the internal structure of melts was analyzed using the static structure factor which reads11 

. (Eq. 5)
𝑆(𝑞) =

𝑁𝑀

∑
𝑖 = 1

𝑁𝑀

∑
𝑗 = 1

〈𝑒
‒ 𝑖𝑞⃗ ∙ (𝑟𝑖 –𝑟𝑗 ) 〉

References

(1) Tarnacka, M.; Jurkiewicz, K.; Hachuła, B.; Wojnarowska, Z.; Wrzalik, R.; Bielas, R.; 
Talik, A.; Maksym, P.; Kaminski, K.; Paluch, M. Correlation between Locally Ordered 
(Hydrogen-Bonded) Nanodomains and Puzzling Dynamics of Polymethysiloxane 
Derivative. Macromolecules 2020, 53 (22), 10225–10233. 
https://doi.org/10.1021/acs.macromol.0c01289.

(2) Tu, W.; Ngai, K. L.; Paluch, M.; Adrjanowicz, K. Dielectric Study on the Well-
Resolved Sub-Rouse and JG β-Relaxations of Poly(Methylphenylsiloxane) at Ambient 
and Elevated Pressures. Macromolecules 2020, 53 (5), 1706–1715. 
https://doi.org/10.1021/acs.macromol.9b02332.

(3) Iacob, C.; Sangoro, J. R.; Papadopoulos, P.; Schubert, T.; Naumov, S.; Valiullin, R.; 
Kärger, J.; Kremer, F. Charge Transport and Diffusion of Ionic Liquids in Nanoporous 
Silica Membranes. Phys. Chem. Chem. Phys. 2010, 12 (41), 13798. 
https://doi.org/10.1039/c004546b.



S8

(4) Kipnusu, W. K.; Kossack, W.; Iacob, C.; Jasiurkowska, M.; Rume Sangoro, J.; Kremer, 
F. Molecular Order and Dynamics of Tris(2-Ethylhexyl)Phosphate Confined in Uni-
Directional Nanopores. Zeitschrift für Phys. Chemie 2012, 226 (7–8), 797–805. 
https://doi.org/10.1524/zpch.2012.0287.

(5) Talik, A.; Tarnacka, M.; Geppert-Rybczyńska, M.; Hachuła, B.; Bernat, R.; 
Chrzanowska, A.; Kaminski, K.; Paluch, M. Are Hydrogen Supramolecular Structures 
Being Suppressed upon Nanoscale Confinement? The Case of Monohydroxy Alcohols. 
J. Colloid Interface Sci. 2020, 576, 217–229. 
https://doi.org/10.1016/j.jcis.2020.04.084.

(6) Morineau, D.; Alba-Simionesco, C. Liquids in Confined Geometry: How to Connect 
Changes in the Structure Factor to Modifications of Local Order. J. Chem. Phys. 2003, 
118 (20), 9389–9400. https://doi.org/10.1063/1.1568932.

(7) Kremer, K.; Grest, G. S. Dynamics of Entangled Linear Polymer Melts: A Molecular-
Dynamics Simulation. J. Chem. Phys. 1990, 92 (8), 5057–5086. 
https://doi.org/10.1063/1.458541.

(8) Grest, G. S.; Kremer, K. Molecular Dynamics Simulation for Polymers in the Presence 
of a Heat Bath. Phys. Rev. A 1986, 33 (5), 3628–3631. 
https://doi.org/10.1103/PhysRevA.33.3628.

(9) Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. 
Comput. Phys. 1995, 117 (1), 1–19. https://doi.org/10.1006/jcph.1995.1039.

(10) Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. 
Graph. 1996, 14 (1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5.

(11) Julia S. Higgins and Henri C. Benoit. Polymers and Neutron Scattering; Clarendon 
Press, 1997.


