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S1. MODELS OF MACROMOLECULES

A. Soft and hard particles

We modeled both hard and soft particles with single spheres of hydrodynamic radii aH =

5.1 nm, which is equal to the hydrodynamic radius of Ficoll70 – a popular polymer crowding

agent [1]. The spheres differ in their hard core (ac) and entanglement (ae) radii. For hard

particles ac = ae = aH, whereas for soft particles ac and ae are symmetrically splitted around

the aH value. Our aim is to single out the effect of softness, so we picked soft particles’ ac

and ae provide the effective occupied volume equal to hard particle’s:

vocc = 4π

∫ ∞
0

r2(1− exp[−βU(r; ac, ae, U0)])dr =
4

3
πa3H, (S1)

where U(r) stands for the interaction potential, which depends, apart from ac and ae, on

the parameter U0 tuning the strength of the shoulder (see Section S1 C). To parametrize

our soft particles for given U0, we solved eq. (S1) for ac and ae with the bisection method,

keeping the position of the CESP potential fixed at ac + ae = 2aH. We used aH = 5.1 nm as

for the hard particle.

All the relevant parameters are gathered in table S1.

TABLE S1. Interaction parameters for hard and soft particles mixtures

ac (nm) ae (nm) βU0 aH (nm)

hard 5.1 5.1 1.2 5.1

soft 3.35 6.85 1.2 5.1

hard 5.1 5.1 0.8 5.1

soft 2.5 7.7 0.8 5.1

B. IgG and DNA

We used a dsDNA model introduced in our previous publication [2]. It consists of 8

linearly bound identical beads of hydrodynamic radius abead = 1.14 nm each, with the har-
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monic potential on bonds and angles. The Young modulus was H = 9.866 kcal mol−1 nm−2

and the force constant for angles 12.086 kcal mol−1 rad−2.

Every base pair has electric charge of 2e, thus in 16-nm dsDNA the total charge sums up

to 96e. For such highly charged molecules the DLVO theory is only valid upon renormalizing

the molecular bare charges [3]. We used the renormalization factor 0.2 as in previous studies

[4, 5]. The diffusion coefficient was obtained by performing simulations of a single dsDNA

which gives DDNA = 58 ± 1.4 nm2 µs−1. The hydrodynamic radius was calculated from the

Stokes-Einstein equation and amounts to aDNA = 3.70± 0.09 nm.

FIG. S1. IgG molecule (a) Crystal structure of human IgG [6] taken from Protein Data Bank

(http://www.rcsb.org/, PDB ID: 1HZH) [7] and visualized using Mol∗ Viewer [8]. (b) The IgG

model used in this work [9].

We used the model for IgG that we introduce in our upcoming work [9]. Briefly, it

consists of six uncharged beads (fig. S1). The interaction parameters between various beads

are presented in Tables S2 and S3. The diffusion coefficient and the hydrodynamic radius

were calculated in the same way as described above for dsDNA and amount to DIgG =

37± 1.0nm2 µs−1 and aIgG = 5.8 nm± 0.2 nm.

C. Interaction potentials

The total interaction potential is constructed by summing four contributions – WCA po-

tential (UWCA), CESP potential (UCESP), DLVO electrostatic potential (UDLVO), and bonded
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TABLE S2. Sizes of the subunits of IgG particle.

Subunit aH = ac = ae (nm)

A 4.5

B 1.0

C 2.42

D 2.42

E 2.42

F 2.42

TABLE S3. Values of equilibrium bond length and equilibrium angle used in IgG model.

Subunit Bond length (nm) Force constant (kcal mol−1 nm−2)

A - B 6.0 1909.86595

B - C

B - E 3.9 1909.86595

C - D

E - F 3.0 1909.86595

Subunit Angle value Force constant (kcal mol−1 rad−2)

A - B - C 125.0◦ 0.05

A - B - E 125.0◦ 0.05

B - C - D 180.0◦ 10.00

B - E - F 180.0◦ 10.00

C - B - E 110.0◦ 0.05

potential (Ubonded):

U = UWCA + UCESP + UDLVO + Ubonded. (S2)

For systems composed of hard and soft spheres only, UDLVO and Ubonded are both zero.

1. WCA repulsion

We included repulsive interactions between any pairs of particles, excluding however the

the IgG beads belonging to the same macromolecule and dsDNA beads that are directly
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connected by a bond. The interaction potential [10]

UWCA (rij) =
εWCAπ

2

315

(
aiaj
ai + aj

)
σ6

[rij − (ai + aj)]
7 . (S3)

To ensure that all van der Waals atoms fit inside the macromolecules, we decreased the hard

core radii by a value equal to the radius of van der Waals atom (σ = 0.15 nm)

ai 7→ a∗i = ai − σ. (S4)

We used a lower and an upper cut-off for the distance between pairs of particles, as

follows. For particles with surface-to-surface separation below 0.08 nm, the repulsive force

was assumed constant (and equal to the value at the 0.08 nm separation). This is done in

order to avoid numerical problems due to large forces (note the strong divergence of eq. (S3)

at rij = ai + aj). The upper cutoff for computing (numerically) WCA interactions was set

to r
(max)
ij = 15 nm, i.e., we set UWCA(rij ≥ r

(max)
ij ) = 0.

Finally, we note that for all the pairs of particles for which UWCA is relevant we have used

εWCA = 0.37 kcal mol−1. This choice follows ref. 4, which successfully reproduced the in vivo

diffusion coefficient of the green fluorescent protein (GFP) in a complex model of cytoplasm

by using the εWCA value quoted above.

2. CESP repulsion

In order to account for the softness of macromolecules, we used Chain-Entanglement

Softened Potential (CESP) introduced by Blanco et al. [11]:

UCESP (rij) =
U0

2

[
1− tanh

(
aac

ae − ac
(rij − [ae + ac])

)]
, (S5)

where ac is the hard-core radius, U0 describes the magnitude of the entanglement interac-

tions, and ae – their extension. a sets the length scale (we set a = 1 nm−1 in all calculations

in line with ref. 11). For the interaction between a hard and a soft particle, we took the

same U0 as for two soft particles. ac and ae are obtained via Lorentz combining rule (see

table S1). For interactions between hard particles, ae = ac, hence the contribution from

UCESP is zero.
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3. Electrostatic repulsion

We modeled the electrostatic repulsion between nonconnected dsDNA beads using the

DLVO (Derjaguin, Landau, Verwey and Overbeek) electrostatic potential [12]:

UDLVO (rij) =
ΘiΘje

2

4πε0ε (1 + κai) (1 + κaj)

exp [−κ (rij − ai − aj)]
rij

, (S6)

where κ (= 1.039 25 nm−1) denotes inverse of the Debye screening length, e – elementary

electric charge, ε = 78.54 – the relative dielectric constant, ε0 – vacuum permittivity, and

Θi – bead’s charge. We used a cutoff for electrostatic interactions equal to 25 nm.

4. Bonded interactions

The bonded potential consists of bond and angle components. We used the bond potential

as implemented in BD BOX:

Ubonded (rij;H, req, rmax →∞) =

− 1

2
Hr2max ln

(
r2max − r2ij
r2max − r2eq

)
− 1

2
Hrmaxreq ln

[
(rmax + rij) (rmax − req)
(rmax − rij) (rmax + req)

]
, (S7)

where req is the equilibrium bond length, rmax is the maximum bond length and H – the

force constant. By setting very large rmax (rmax = 2 500 000.0 nm) it converges to standard

harmonic potential:

Ubonded (rij;H, req, rmax →∞) =
1

2
H (rij − req)2 . (S8)

We used the angle potential as implemented in BDBOX:

Ubonded (αijk; ξ, αeq) =
1

2
ξ (αijk − αeq)

2 , (S9)

where ξ is the angle force constant and αeq – the equilibrium angle value. The values of

force constants and equilibrium bond lengths/angles are gathered in table S3.
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S2. BROWNIAN DYNAMICS SIMULATIONS

We used a customized version of the simulation package BD BOX [13] (see https://www.

fuw.edu.pl/~mdlugosz/downloads.html). The modification included the Lennard-Jones

and soft (CESP) interactions between all types of “macromolecules”. Brownian dynamics

trajectories have been generated by using the second order Iniesta-de la Torre algorithm

[14, 15] where the position of ith bead at time t is

ri = r0i +
1

2

∆t

kBT

N∑
j=1

(
D0

ijF
0
j + D′ijF

′
j

)
+ Ri, (S10)

where N is the number of beads, ∆t = t − t0 > 0 is the time step, r0i is the position of

the ith bead at time t0, kB is the Boltzmann constant and T temperature. The (position-

dependent) diffusion matrix D0
ij (see Section S2 A) and the force F 0

j acting on the jth bead

are evaluated at time t0, while D′ij and F ′j are evaluated for beads in a configuration with

the positions at an intermediate corrector step [14].

The 3N -dimensional vector of random displacements, R̂ = {Ri} = B̂X̂, where X̂ is a

random Gaussian vector, and matrix B̂ = {Bij} is a ‘square root’ of the diffusion tensor,

i.e.,

D̂ = B̂B̂
T

(S11)

where D̂ = {Dij}. For the Iniesta-de la Torre algorithm, the diffusion matrix used in

eq. (S11) is (D̂
0

+ D̂
′
)/2, so that the random forces satisfy

〈Ri〉 = 0, 〈RiR
T
j 〉 = ∆t

(
D0

ij + D′ij
)
. (S12)

We used Cholesky decomposition to calculate B̂, as implemented in BD BOX, which we

performed every 100 steps to increase the performance, similarly as in ref. 2, 4, 16.

A. Hydrodynamic interactions

We used the generalized Rotne-Prager-Yamakawa tensor [17–19], which reads (ai is the

bead’s hydrodynamic radius, rij the center-to-center separation between the i’th and j’th

beads, η is viscosity, and I is the unit tensor):

Dii =
kBT

6πηai
I; (S13a)
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Dij(rij) =
kBT

8πηrij

[(
1 +

a2i + a2j
3r2ij

)
I +

(
1− a2i + a2j

r2ij

)
rijr

T
ij

r2ij

]
(S13b)

for rij > ai + aj;

Dij(rij) =
kBT

8πηrij

[
16r3ij(aj + aj)− [(ai − aj)2 + 3r2ij]

2

32r3ij
I +

3[(ai − aj)2 − r2ij]2
32r3ij

rijr
T
ij

r2ij

]
(S13c)

for aMij − amij < rij < ai + aj, where aMij is the largest and amij the smallest of ai and aj; and

Dij =
kBT

6πηaMij
I, (S13d)

for rij < aMij − amij .

B. Simulation parameters

The box size was 85 nm× 85 nm× 85 nm and periodic boundary conditions were applied

in all three directions. In order to account for the long-range character of the hydrodynamic

interactions, we used the Ewald summation [20], as implemented in BD BOX [13]. The

parameter controlling the convergence of the Ewald summation was
√
π (default value in

BD BOX). The maximal magnitude of both real and reciprocal lattice vectors was 2. For

computational efficiency, the diffusion tensor was updated once per 100 steps [2, 4, 16] (each

update causes the Cholesky decomposition).

In all simulations, the temperature was T = 298.15 K (room temperature) and the viscos-

ity of the medium (need for the computation of the hydrodynamic interactions) η = 1.02 cP,

corresponding to water.

The time step ∆t (eq. (S10)) was 0.5 ps; a BD simulation runs for at least 2×107 iterations

steps, i.e., a total time of at least 10 µs.

C. Simulated systems

The number of particles for the occupied volume fractions and molar fractions simulated

in this work are presented in tables S4 and S5.
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TABLE S4. Studied hard and soft particles mixtures

Volume

fraction Molar fraction Particle number

hard soft hard soft

10 % 0.28 0.72 31 80

10 % 0.72 0.28 81 30

10 % 1.00 0.00 111 0

10 % 0.00 1.00 0 111

30 % 1.00 0.00 333 0

30 % 0.00 1.00 0 333

TABLE S5. Studied IgG/DNA and hard/soft particles mixtures

Volume

fraction Molar fraction Particle number

IgG/DNA hard/soft IgG/DNA hard/soft

IgG

10 % 0.28 0.72 30 79

DNA

10 % 0.25 0.75 36 107
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D. Trajectory analysis and MSD

Ensemble-averaged mean-square displacement (MSD) is

MSD(m∆t) =
1

Ntraj

Ntraj∑
i=1

{ri [m∆t]− ri [0]}2. (S14)

However, to gather more statistics, we used time-averaged MSD (TAMSD), which should

lead to the same results in the long-time limit. As in our previous work [2, 16], we used

FREUD library [21] to calculate TAMSD

TAMSD(m∆t) =
1

Ntraj

Ntraj∑
i=1

1

Nsteps −m

Nsteps−m−1∑
k=0

{ri [(k +m)∆t]− ri [k∆t]}2, (S15)

where Ntraj is the number of trajectories and Nsteps the total number of steps. The shift ∆t

in trajectory analysis was 5 ns.

The time-dependent relative apparent diffusion coefficient is:

D(t)

D0

=
TAMSD(t)

6D0t
, (S16)

where D0 is diffusion coefficient in infinite dilution. For a spherical particle, D0 is given by

the Stokes-Einstein equation.

The long-time diffusion coefficients Dl have been obtained by fitting to a constant the

numerical results for D(t)
D0

in a time window around t = 5 µs. Uncertainty of the simulation

results due to sampling error was estimated by dividing the simulations into 5 subsets and

treating them as independent ’measurements’.
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S3. MONTE CARLO SIMULATIONS

To compute the occupied and excluded volume fractions in our simulation systems (based

on snapshots from BD simulations), we used Monte Carlo (MC) insertion method presented

below.

1. The positions of the particles are loaded from the selected BD snapshot.

2. The tracer is thrown into the system at a randomly generated position (and orientation

for dsDNA and IgG).

3. The tracer potential energy Vi is computed.

4. Counting variable x is incremented by 1− exp (−Vi/kBT ).

5. The tracer is removed from the system.

6. Steps 2-5 are repeated N times.

7. After N repeats, the value x
N

is taken as an estimate of the excluded volume fraction.

For hard-sphere potential, the method is equivalent to incrementing x only in the case of

overlap. Note that for a single particle and the same tracer, the calculated volume fractions

are related to the second virial coefficient [22]

B2 = 2π

∫ ∞
0

drr2
[
1− e−V/kBT

]
. (S17)

We also note that the ‘effective’ hard sphere radius aB2 = (3B2/2π)1/3 that follows from B2

differs from the ‘equivalent’ hard-core diameter defined by Barker and Henderson [23]

2aequ =

∫ ∞
0

dr
[
1− e−V/kBT

]
, (S18)

which amounts to aequ = 4.8 nm and aequ = 4.2 nm for U0 = 1.2kBT and 0.8kBT , respectively.

Excluded volumes for various pairs of particles are shown in table S6. The excluded

volumes for the simulated systems of hard and soft particles are presented in tables S7

and S8.
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TABLE S6. Volume excluded by a single hard/soft particle to another hard/soft particle expressed

as a multiple of hard particle volume vH.

vex(H −H) vex(H − S) vex(S − S)

βU0 = 0.8

ac = 2.5 nm

ae = 7.7 nm 8vH 6.14vH 5.85vH

βU0 = 1.2

ac = 3.35 nm

ae = 6.85 nm 8vH 7.20vH 6.92vH

TABLE S7. Excluded volume fractions in simulated systems of occupied volume fraction φocc =

10 % composed of soft particles (βU0 = 1.2, ac = 3.35 nm, ae = 6.85 nm) and hard particles

(ac = ae = 5.1 nm).

φocc = 10 %, βU0 = 1.2

Tracer xsoft = 100 % xsoft = 73 % xsoft = 27 %

ac = 0 nm

ae = 0 nm 9.90± 0.02% 9.95± 0.03% 9.99± 0.03%

ac = 5.1 nm

ae = 5.1 nm 56.2± 0.5% 58.9± 0.7% 61.1± 0.7%

ac = 3.35 nm

ae = 6.85 nm 54.4± 0.4% 56.1± 0.6% 57.3± 0.5%
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TABLE S8. Excluded volume fractions in simulated systems of occupied volume fraction φocc =

30 % composed of soft particles (βU0 = 1.2, ac = 3.35 nm, ae = 6.85 nm) and hard particles

(βU0 = 1.2, ac = 5.1 nm, ae = 5.1 nm).

φocc = 30 %, βU0 = 1.2

Tracer xsoft = 100 % xsoft = 0 %

ac = 0 nm

ae = 0 nm 27.6± 0.2% 30.1± 0.10%

ac = 5.1 nm

ae = 5.1 nm 95.4± 0.12% 99.1± 0.2%

ac = 3.35 nm

ae = 6.85 nm 94.0± 0.14% 98.1± 0.3%
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S4. SUPPLEMENTARY PLOTS
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FIG. S2. Radial distribution functions (RDFs). RDFs between various crowders for different

parameters of the softened shoulder potential (eq. (1) in the main text) in a mixture of soft and

hard (Ficoll70) crowders. Occupied volume fraction φocc = 10 % and the fraction of hard particles

xhard ≈ 27 %.
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FIG. S3. Radial distribution functions (RDFs). RDFs between various crowders for different

molar fractions of the soft crowders in a mixture of soft and hard crowders. Occupied volume

fraction φocc = 10 %.
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FIG. S4. Radial distribution functions (RDFs). RDFs between hard and soft crowders in

unmixed systems for two occupied volume fractions φocc.
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FIG. S5. Volume fractions excluded to a dsDNA by soft and hard crowders. Difference

in the excluded volume fractions ∆φex = φhardex − φsoftex for a rigid polymer of length ` (modelling

dsDNA pieces) in hard and soft crowders of the same hydrodynamic radius aH. ab is the radius of

a polymer bead.
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FIG. S6. Translational diffusion of dsDNA and Streptavidin tracers in solutions of

various crowding agents. The results are taken from ref. 1. These authors calculated the oc-

cupied volume fractions φocc using the measured mass of crowders and specific volumes of Ficoll

and PEG/PEO (0.65 mL g−1 and 0.83 mL g−1, respectively) [1]. To match with our results, we

computed φocc from the hydrodynamic radii and molecular masses, assuming that all crowders

are spheres of the size determined by the hydrodynamic radius. Note that while this is likely a

reasonable approximation for Ficoll, the physical (gyration) radius of a soft crowder (PEG/PEO)

is larger. We assume, however, that the effective radius is equal to the hydrodynamic radius in

the sense used in this work (see fig. 1 in the main text). The specific volumes computed with this

strategy are between an order and two orders of magnitude larger than used in ref. 1, namely:

4.78 mL g−1 (Ficoll70), 6.30 mL g−1 (Ficoll400), 13.34 mL g−1 (PEG35), 28.36 mL g−1 (PEO100),

46.05 mL g−1 (PEO200), and 61.37 mL g−1 (PEO300). The hydrodynamic radii are 5.1 nm (Fi-

coll70), 10 nm (Ficoll400), 5.7 nm (PEG35), 10.4 nm (PEO100), 15.4 nm (PEO200), and 19.4 nm

(PEO300).
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