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1 Experimental details

To explore bulk water’s structure at different temperatures, we designed a transmission XRD exper-

iment. The setup at BL19U2 station of Shanghai Synchrotron Radiation Facility (SSRF) is shown

in Fig. S1(a). The deionized water was sealed in a copper ring (inner radius 8 mm, thickness 1

mm), and two thin Kapton films were used as the windows to make the X-ray get through. A small

hole is drilled in the side wall of the copper ring for water injection and temperature detection. The

setup (i.e., water inside copper ring) was attached to a thermal stage (Linkam, HFSX350) which

can adjust the temperature between -196 ◦C to 350 ◦C. The thermal stage can also provide nitro-

gen atmosphere to prevent the Kaptpom film window from fogging when the sample is cooled to

low temperatures. A thermistor (TE connectivity, Micro-BetaCHIP) was inserted into the water to

detect the real-time temperature. The distance between the thermistor and the X-ray area is less

than 0.5 mm to make sure that the measured temperature is accurate. An area detector (Pilatus 1M,

169*179 mm2) is used to collect the scattered X-ray. The distance between the detector and the

container is calibrated by the silver behenate powder, which is 234.6 mm. The X-ray beam has the

spot size 320*43 µm2 and energy 12.000 ± 0.002 keV, and the q range collected by the detector is

0.3∼4.5 Å−1. As shown in Fig. S1(b): besides the DI water in the container, the X-ray beam also

goes through other materials in other regions, such as air and Kapton film. Therefore, the detector

also collects X-ray scattered by these materials and a careful data correction is required for the

diffraction raw images. The correction details will be discussed in the next section.

Compared with the temperature set by the thermal stage, the temperature measured by the
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Figure S1: (a) The experimental setup at SSRF. (b) The simplified schematics of experimental

setup. The sample was sealed in a copper ring container with a thermistor detecting the real-

time temperature. The area detector can collect scattered X-ray from different regions. (c) The

calibration curve between 1/T and ln(R) for the temperature probe (thermistor). The curve is

excellently fitted by a cubic polynomial between -20 ◦C to 95 ◦C. (d) The real-time temperature of

the sample. The laser heating effect is clearly observed indicating the sensitivity of the thermistor.
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thermistor inserted into the water is more accurate. The thermistor was calibrated in advance in

the circulating bath system (PolyScience, PD15R-40) between -20 ◦C to 95 ◦C. The relationship

between 1/T and ln(R) (R is thermistor’s resistance) can be fitted with a cubic polynomial (show in

Fig. S1(c)). We used a mutimeter (Keithley, model 2700) to measure the real-time resistance of the

thermistor with a frequency up to 30 Hz, and the temperature can be obtained with the calibration

curve Fig. S1(c). A typical temperature measurement curve is shown in Fig. S1(d): there is a slight

heating effect below 0.2 ◦C after the X-ray is turned on. Apparently, we can monitor the sample

temperature in real time with a high accuracy below 0.1 ◦C.

2 Experiment data correction

When water was measured in the copper-ring container, as shown in Fig. S1(b), the scattering

intensity collected can be represented as the following (multiple scattering was neglected):

Iscb(θ) = Ib1(θ) + Ic1(θ) · attc(θ, µc, tc1) · e−(µsts+µctc2+µbtb2)/cosθ

+Is(θ) · Tc1 · atts(θ, µs, ts) · e−(µctc2+µbtb2)/cosθ + Ic2(θ) · Tc1 · Ts · attc(θ, µc, tc2) · e−µbtb2/cosθ

+Ib2(θ) · Tc1 · Ts · Tc2 · attb(θ, µb, tb2)

(1)

where the subscripts s, c and b represent contributions from sample (i.e., water), container windows

(i.e., Kapton film) and background air respectively. 1 and 2 represent different regions along the

light path (see Fig. S1(b)). µ is the attenuation coefficient. t is the thickness of the corresponding

material. θ is the scattering angle. att(θ, µ, t) is the angle dependence of the attenuation when the

scattering X-ray goes through the corresponding material. att(θ, µ, t) in general also depends on
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the incident X-ray energy, but in our experiment the energy is fixed. T is the θ = 0 transmission

factor, typically represented as e−µt. The final exponential part in relevant terms represents the

absorption by the following up materials after the current scattering material: the scattered light

needs to go through these following up materials and gets absorbed before reaching the detector.

When there was no water in the container and the container space (labelled by b3) was filled with

air, the corresponding background scattering intensity is:

Icb(θ) = Ib1(θ) + Ic1(θ) · attc(θ, µc, tc1) · e−(µbts+µctc2+µbtb2)/cosθ

+Ib3(θ) · Tc1 · attb(θ, µb, ts) · e−(µctc2+µbtb2)/cosθ + Ic2(θ) · Tc1 · Tb3 · attc(θ, µc, tc2) · e−µbtb2/cosθ

+Ib2(θ) · Tc1 · Tb3 · Tc2 · attb(θ, µb, tb2)

(2)

In our experiment, the Ib1 term was prevented from entering the detector and thus can be neglected.

The attenuation coefficient for sample water, container windows (Kapton film) and background air

at 20 ◦C are 2.9079 cm−1, 2.454 cm−1 and 3.349*10−3 cm−1 respectively. Their thicknesses are

0.1 cm, 0.005 cm and 23.46 cm respectively. We can find that µsts ≫ µctc, µsts ≫ µbtb, after

combining Eq. (1) and Eq. (2), the intensity contributed by the sample can be calculated as 45:

Is(θ) ≈ Iscb(θ)−Ts·Icb(θ)
atts(θ,µs,ts)

(3)

Because all the materials the X-ray goes through are slab shaped with uniform thickness, the

attenuation for this geometry is:

att(θ, µ, t) =
exp( −µt

sin(θ+α)
)[exp( µt

sin(θ+α)
− µt

sinα
)−1]

µt
sin(θ+α)

− µt
sinα

(4)
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where α is the angle between the incident light and the slab surface, which is π/2 in our experiment,

and thus Eq. (4) simplifies to:

att(θ, µ, t) = exp(−µt)−exp(−µt/ cos θ)
µt(1/cosθ−1)

(5)

Because of the geometry of the area detector and the polarization of the X-ray beam, the geometric

and polarization 46 corrections are required:

Ics(θ) =
Is(θ)geo(θ)

pol(θ)

geo(θ) = cos3(θ)

pol(θ) = 1
2
(1 + cos2θ − f cosφsin2θ)

(6)

where θ is the scattering angle, φ is the azimuthal angle, and f is the polarization factor of the

X-ray beam, which is 0.99 in our experiment. The geometric and polarization corrections were

performed by the software Fit2D 47, which was used to integrate the X-ray diffraction images into

I(q) curves.

However, Eq. (3) cannot be directly used to subtract the background, because the incident

light intensity is always fluctuating with time and a correction factor based on the actual intensity is

required. To obtain this correction factor, we notice that there is a sharp peak around q = 0.4 Å−1 in

the intensity curve Iscb (see Fig. S2(a)), which comes from the Kapton film instead of liquid water.

Therefore, we multiply a correction factor Ts to make sure that after background subtraction, the

true intensity curve around q = 0.4 Å−1 is completely flat without any peak feature 48. The profiles

of the intensity curves before and after corrections are presented in Fig. S2(b).

The fully corrected intensity can be normalized by the number of water molecules, the inci-
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Figure S2: (a) The integrated intensity before and after data correction: the original raw data

without corrections (Iscb, black), intensity from the background air and sample container (Icb,

red), intensity after subtracting the background (Iscb − Ts · Icb, blue), the final intensity after slab

absorption correction (Is, pink). (b) The necessary data needed to calculate the molecular structure

factor S(q). The fully corrected scattering intensity at 25 ◦C (black solid). The square of water

molecular form factor calculated by quantum mechanics 51 (black dash). Compton scattering in

theory (red).
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dent beam flux and the exposure time. In practice the KroghMoe 49 and Norman 50 methods are

generally used because of convenience. The scale factor α is defined as:

α=
−2π2z2ρ+

qmax∫
0

[F 2(q)+Iincoherent(q)]q2dq
qmax∫
0

Iexperiment(q)q2dq
(7)

where ρ is the number density of molecules (in molecules/Å3), z is the number of electrons per wa-

ter molecule, F 2(q) is the square of water molecule’s form factor, qmax is the maximum wavenum-

ber we can measure in the experiment, Iincoherent(q) is the incoherent or Compton scattering from

the sample, and Iexperiment(q) is the fully corrected intensity measured from our experiment. Both

F 2(q) and Iincoherent(q) can be calculated theoretically by quantum mechanics 51. In our experi-

ment, the minimum q is 0.3 Å−1 because of the beam stop, and thus the lower limit of the integra-

tion is 0.3 Å−1 instead of zero. After normalized by α, the intensity is re-scaled onto a universal

scale in the electron units, and then the Compton scattering 51 is subtracted. One typical exam-

ple of the normalized intensity after subtracting Compton scattering is illustrated in Fig. S2(b)

by the pink Is curve. Using S(q) − 1 = [Inor(q) − F 2(q)]/[2fH(q) + fO(q)]
2 , the molecular

structure factor S(q) - 1 at different temperatures can be calculated 52. Following the work in the

previous research 45, we start from the independent atom approximation (IAA) form factors of

hydrogen and oxygen atoms using the 6-Gaussian fitting functions 53. After considering the elec-

tron density change caused by the chemical bonding, the modified atomic form factors (MAFF),

fα(q) = f 0
α(q) [1− (aα/zα) · exp(−q2/2δ2)], are then calculated, where f 0

α(q) is the IAA form

factor, zα is the atomic number for atom α, and aα represents the electron transfer, which is -1 for

oxygen atom and +0.5 for hydrogen atom according to the previous literature 52. The value of δ is

2.0 Å−1 for both oxygen and hydrogen atoms.
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3 PCA analysis

The PCA analysis is done on the structure factor curves S(q)-1 at different temperatures. We

discretize every S(q)-1 curve into 915 discrete values with equal partition in our experimental

range between 0.3 to 4.5 Å−1. Thus each S(q)-1 curve at one specific temperature is converted

into a 1(row)*915(column) vector. We measured 18 different temperatures between -5 ◦C to 80

◦C in our experiment, and all the 18 curves are converted to a 18*915 data matrix. Then this

data matrix’s covariance matrix (915*915 in dimension) is constructed and the covariance matrix’s

eigenmodes and eigenvalues are calculated 54, 55, as shown in Fig. 1(e) and (f) in the main text.

These calculations are performed by the professional mathematical software Matlab 56. Note that

the partition number (915 in our case) chosen to discretize S(q) − 1 curves has no significant

influence on the final PCA results, as long as the partition number is large enough to reflect the

curve’s true profile. We also tried other partition numbers and the PCA results are the same.

In addition, more data sets across a broader temperature range can increase the accuracy of

PCA results. Therefore, we also performed the PCA analysis on the structure factor curves from

numerical simulations, which cover a much broader temperature range between -60 ◦C and 100 ◦C

with 33 temperatures in between. Consistent with the experimental results, the fraction of LDL,

s, has a good linear relationship with p1, and the 1st eigenmode has very similar profile as the

structure factor difference between LDL and HDL, as shown in Fig. S3.
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Figure S3: PCA analysis on our numerical simulations, which covers a much broader temperature

range (-60 ◦C to 100 ◦C) than the experiment (-5 ◦C to 80 ◦C). (a) The LDL fraction shows an

excellent linear relation with the projection pre-factor p1. (b) The first eigenmode agrees very well

with the curve LDL minus HDL.

4 Simulation details

Many different water models exist. According to the number of interaction points, there are 3-

site models SPC 57, TIP3P 58, SPC/E 59, 4-site models TIP4P 58, TIP4P-Ew 60, TIP4P/2005 61,

5-site models ST2 62, and TIP5P 63, etc.. In general, the electrostatic interaction is calculated with

Coulomb’s law, and the dispersion and repulsion forces are calculated with the Lennard-Jones

potential 64. The main differences between these models are the charges carried by the sites, the

bond lengths, and the parameters in the Lennard-Jones potential besides the number of the sites.

We tried five models, SPC/E, TIP3P, TIP4P, TIP4P-Ew and TIP5P in our MD simulations, with
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the software Gromacs (v.2016.5) 65. Consistent with experimental conditions, the simulations

were performed under the isothermal-isobaric NPT ensemble. The isotropic Parrinello-Rahman

barostat 66, 67 and the Nose-Hoover thermostat 68, 69 were used to guarantee the simulations were

performed at the set pressure and temperature. 512 water molecules were put in a cubic box

(side length ≈ 25 Å) and the pressure was kept fixed at the atmospheric pressure 1.01 bar and the

temperature varied from -60 ◦C to 100 ◦C in every five degrees. Periodical boundary condition

(PBC) was used to eliminate the influence from boundary. The simulation time for water at low

(below -20 ◦C) and high (above -20 ◦C) temperatures last 20 and 10 ns respectively, which are long

enough for the system to reach the equilibrium state. Besides the normal pressure, the simulation

time for water at extreme HDL and LDL conditions (super-high and super-low pressure) was 20

ns.

5 Simulated scattering intensity and structure factor

In general, the total X-ray differential scattering cross section dσ/dΩ of molecular liquids can be

divided into two parts, contributions from individual molecules (self-scattering) and from inter-

molecular correlations defined by the function Hij(q),

I(q) =
∑
ij

xixjfi(q)fj(q)
sin(qrij)

qrij
+

∑
i≤j

xixjfi(q)fj(q)Hij(q) (8)

Hij(q) = 4πρ
∞∫
0

r2dr(gij(r)− 1) sin(qr)
qr

(9)

where xi is the atomic fraction of atom type i, fi(q) is the atomic scattering factor for atom type i

and rij are the intramolecular distances between atom centers. ρ is the atomic density and gij(r)

11



ba

c d

Figure S4: (a) The F 2(q) calculated using quantum mechanics and MAFF agree very well within

a broad q range. (b), (c) and (d) The related radial distribution functions, g(rOO), g(rOH) and

g(rHH), which are required to calculate the simulated scattering intensity at different conditions.
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is the radial distribution function (RDF) between atom i and j. In our experiment, the scattering

intensity I(q) can be represented as,

I(q) = Inorself−intra(q) + Inorinter(q)

= f 2
O(q) + 2f 2

H(q) + 4fO(q)fH(q)
sin(qrOH )

qrOH
+ 2f 2

H(q)
sin(qrHH )

qrHH

+4
3
H inter

HH (q)f 2
H(q)+

4
3
H inter

OH (q)fH(q)fO(q)+
1
3
H inter

OO (q)f 2
O(q)

(10)

The first term in Eq. (10) is F 2(q) mentioned in Experiment data correction section, which can

be calculated using quantum mechanics 51. Of course, it can also be calculated using the formula

in Eq. (10). In fact, the difference between the two methods can be neglected when appropriate

parameters are used in Eq. (10), as shown in Fig. S4(a). The bond lengths rOH = 0.9572 Å and

rHH = 1.5139 Å are used. Our simulated results are calculated using the quantum mechanics data.

The second term in Eq. (10) (or Eq. (8)) represents the intermolecular correlations: Hij term can

be calculated using Eq. (9), the atomic density is 512*3 divided by volume, and the upper limit of

integral is set to 10 Å. The related gij(r) (shown in Fig. S4(b), (c) and (d)) can be calculated after

the system reaches equilibrium, and then the scattering intensity can be calculated using Eq. (9)

and (10). The corresponding molecular structure factor S(q)-1 based on I(q) can then be obtained.

To calculate the molecular structure factor of the 5-hydrogen-bond component, S5H(q)-1, we

first pick out the molecules surrounded by five hydrogen bonds, and set them as origin to obtain

gij(r). Then the intensity can be calculated using Eq. (9) and (10), which further gives S5H(q)-1.

Among all the five popular water models tested, we found that the results from the TIP4P-Ew

model agree with our experiments the best (shown in the main text Fig. 2(e) and (f)), which is used
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throughout our simulation.

Figure S5: Verifying the two-component model with simulation. The simulation results (square

symbols) agree well with the two-component model (solid curve), in a temperature range much

broader than the experiment.
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6 Two-component model

For a liquid composed by two components, such as LDL and HDL, its free energy G can be

represented as 70:

G = GLDL + s∆G+ kBT [s ln s+ (1− s) ln(1− s)] + Js(1− s) (11)

where s is the fraction of LDL, GLDL is the free energy of pure LDL, ∆G = GLDL−GHDL=∆E−

T∆σ+P∆V , and J is the coupling between the two components. As the two components convert

into each other, the equilibrium will be reached under the following condition:

∂G
∂s

= ∆G+ kBT ln( s
1−s

) + J(1− 2s) = 0 (12)

Under our experiment and simulation conditions, the terms J and P∆V in ∆G can be neglected 41, 71,

and then the relation between s and T can be obtained:

s = 1

1+e
∆E
kBT

−∆σ
kB

(13)

In fact, this relationship of Eq. (13) is applicable in a temperature range much broader than our

experiment. To verify it, we apply it to the simulations that can reach down to -60 ◦C, and find that

the two-component model agrees excellently with the simulations, as shown in Fig. S5. The fitting

gives that ∆E/kB = -1311.6 K and ∆σ/kB = -5.87, which are close to our main text results.
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7 Calculating the fractions of LDL and HDL

Following the method in ref 38, we decompose the order parameter distribution P (ζ) into the

combination of two Gaussian functions,

P (ζ) = (1− s)PHDL(ζ) + sPLDL(ζ)

= P (0)

exp(−
m2

HDL
2σ2

HDL

)
exp(− (ζ−mHDL)

2

2σ2
HDL

) + (1− σHDL

√
2πP (0)

exp(−
m2

HDL
2σ2

HDL

)
)
exp(− (ζ−mLDL)2

2σ2
LDL

)
√
2πσLDL

(14)

where s is the fraction of LDL, and this formula has assumed that PLDL(0) = 0, which is reasonable

because of the open structures of LDL. The distribution of order parameter, P (ζ), under different

temperatures are shown in Fig. S6(a). For comparison, the HDL and LDL dominant samples are

also plotted. As temperature increases, the data curve shifts from LDL-like to HDL-like, as a

result of their mutual conversion. We can further obtain the exact fractions of LDL and HDL in

each sample, by fitting its P (ζ) curve with two Gaussian curves, as shown in Fig. S6(b): the two

Gaussian curves represent thermally broadened HDL and LDL components respectively, and the

weight of each Gaussian gives the fraction of each component. Using this formula to fit HDL and

LDL dominant systems’ P (ζ), we can get their fractions as shown in Fig. S6(c) and (d).

Due to the existence of the 3rd component, the fractions of LDL and HDL need to be recal-

culated. We use a similar method as the two-component model, except that we identify the 3rd

component and exclude such molecules first. After eliminating the third component and renor-

malizing the rest into unity, we obtained the renormalized order parameter distribution P (ζ) and

decomposed it into two Gaussian curves to get the new renormalized fractions of LDL and HDL

at different temperatures. One typical fitting with two Gaussian curves is shown in Fig. S6(b) and
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Figure S6: (a) The distribution of the order parameter, P (ζ), under different conditions. (b) Fitting P (ζ)

excellently with two Gaussian curves. The left Gaussian corresponds to HDL and the right one corresponds

to LDL. Their weights give the fractions of HDL and LDL. The two-Gaussian fitting method also works well

after the 3rd component is considered and excluded. (c) and (d) The two-Gaussian decomposing result of

our HDL-dominant and LDL-dominant systems. The result shows that we have obtained a HDL dominant

(97.7%) system (c) and an LDL dominant (72.3%) system (d). (e) The fraction of LDL obtained in three

different methods: (1) the previous two-component method without considering the 3rd component (black),

(2) after considering and excluding the 3rd component and then renormalizing the LDL fraction among the

rest (red), and (3) the real LDL fraction in the system after considering the 3rd component (blue). The result

shows that the fraction of LDL changes slightly (a few percent) due to the low fraction of the 3rd component

(blue). (f) Fitting the re-normalized LDL result with the two-component model, Eq. (13). The red solid

curve comes from the data points of the re-normalized method (red) in (e) and the agreement with theory

(dashed curve) is very well.
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the agreement is excellent. Due to the low fraction of the 3rd component, the new renormalized

fractions of LDL (and HDL) only change very little in comparison to the two-component model,

as shown by the red disc and black square symbols in Fig. S6(e). The real fractions of LDL after

considering the existence of the 3rd component decreases by a few percent in comparison to the

previous pure two-component result, which are shown as the blue triangles in Fig. S6(e). Fitting

the theory of Eq. (13) with the renormalized s curve in Fig. S6(f), we can obtain the fitting param-

eters of ∆E/kB = -1296.6 K and ∆σ/kB = -5.84, which only deviate slightly (around 5%) from

the previous two-component model (∆E/kB = -1238.3 K, ∆σ/kB = -5.63). Therefore, the third

component does not cause significant changes and the two-component model still describes the

main feature of water’s structure.

8 Structures of LDL and HDL

According to the fitting parameters in Eq. (13), we know that LDL has lower energy and entropy

compared with HDL. Therefore, LDL tends to dominate at low temperatures. Following previous

research 38, 39, we construct LDL dominant system at P = -2000 bar, T = 200.0 K and HDL domi-

nant system at P = 10000 bar, T = 250.0 K in simulation. Using Eq. (10), their scattering intensity

I(q) can be calculated from simulation, and the corresponding molecular structure factor S(q) is

obtained, both are shown in Fig. S7(a). Obviously, the two systems exhibit different features in

their I(q) and S(q) curves. In their I(q) curves, the HDL dominant system has one main peak at

q = 2.28 Å−1 while the main peak for the LDL dominant system is at 1.68 Å−1. In a recent exper-

iment 31, similar peaks at q = 2.15 Å−1 for HDL and q = 1.7 Å−1 for LDL were observed during
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Figure S7: Comparison between our simulated LDL and HDL system in (a) with the previous

experiment data in (b) 31 and (c) 42. (a) Our simulated scattering intensity (I(q)) and molecular

structure factor (S(q)) of HDL-dominant and LDL-dominant systems. (b) The contribution of

HDL and LDL to the scattering intensity in ref 31. The LDL curve (red) shows a peak at q = 1.7

Å−1 while the HDL curve (gray) has a peak at q = 2.15 Å−1, which are close to the main peaks

in our simulated I(q). (c) The extrapolated structure factor of HDL and LDL in ref 42. The HDL

curve (e) exhibits a peak and a shoulder while the LDL curve (a) shows two well separated peaks

between 1∼4 Å−1, which are similar to our simulated S(q).
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the liquid-liquid transition process (shown in Fig. S7(b)), which agrees well with our simulation

results. In addition, our HDL dominant system’s S(q) exhibits a main peak at q = 2.32 Å−1 and a

shoulder at q = 2.97 Å−1 while the LDL dominant system exhibits two peaks at q = 1.71 Å−1 and

3.03 Å−1. These properties also agree well with the results in a previous neutron diffraction exper-

iment 42 (shown in Fig. S7(c)). The two well-separated peaks in the S(q) of LDL dominant system

indicate the separation of its first and second shells at molecular level. The separation between the

two shells results in a low-density and ordered structure with low energy and entropy. By contrast,

for the S(q) of HDL dominant system, the main peak and the shoulder-like peak on its right are not

well separated, due to the collapse of the first and second shells in the molecular structure. This

results in a high-density and disordered structure with high energy and entropy. The agreement

between experiment and simulation provides a strong support for our simulation.

9 Structure of the 5-hydrogen-bond component

To explore the structure of the 5-hydrogen-bond component in real space, we calculate its angle

distribution P(θ) as the following: we first connect the central oxygen atom with the five sur-

rounding oxygen atoms to form five straight lines, the angle between any two lines is then defined

as θ and the distribution of these angles gives P(θ). P(θ) at different temperatures are shown in

the main text Fig. 4(d). Obviously, P(θ) is not a random distribution and some specific structure

should exist. To figure out this structure, we note that all five hydrogen bonds have similar lengths,

and approximately assume that the five surrounding oxygen atoms are uniformly distributed on

a spherical surface. How to distribute N points uniformly on a spherical surface? This is the
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Figure S8: Random perturbations to the uniform distribution of five points on a spherical surface.

(a) First we put many (105) random points uniformly distributed on the spherical surface whose

radius is 1. All the points are generated using the method in the ref 74. The red points represent

the points within the distance Rd from the original ideal positions. Five such red points plus the

sphere center form one specific configuration mimicing the 5-hydrogen-bond structure. Numerous

such configurations (3 ∗ 104) are then obtained for good statistics. (b) The distribution P(θ) under

different Rd perturbations. The distribution agrees well with the simulated 5-hydrogen-bond struc-

ture when Rd equals to 0.46 (shown in the main text Fig. 4(d)).
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so called Spherical Code or Thomson problem. For our N = 5 situation, putting two points

at north and south pole respectively, and the rest three on the equator with the angle 120◦ is the

most uniform configuration 72, 73. To mimic thermal effect, we add random perturbations to the

five points’ positions as the following. We first generate 105 points randomly and uniformly dis-

tributed on a spherical surface 74, as shown in Fig. S8(a). Then we find all the points within the

distance of Rd from the five ideal points. We randomly choose one point for each center and form

one specific configuration and calculate the corresponding angles θ. For each Rd, we calculate

3*104 random configurations to get the angle distribution as shown in Fig. S8(b). We find that

the angle distribution agrees the best with the actual simulation results when Rd equals to 0.46 of

sphere radius (shown in the main text Fig. 4(d)), which indicates that 0.46 best matches the thermal

fluctuations around our simulation temperature range. Therefore, the 5-hydrogen-bond structure

can be considered as five water molecules uniformly distributed around the central molecule on

a spherical surface. Due to the high symmetry 73 and low potential energy of this configuration,

the 5-hydrogen-bond component exhibits a very stable fraction with temperature change, which is

different from LDL and HDL.

10 Differentiating three components and calculating their local densities

The fractions of the three components can be calculated by the order parameter distribution (LDL

and HDL) and the unique 5-H-bond structure. To calculate their local densities, however, a well-

defined criterion must be defined to differentiate the three components microscopically. The 5-H-

bond component can be easily picked out because of its unique structure, and a convenient method
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to differentiate the LDL and HDL in the rest molecules is to set a cut-off order parameter ζ to satisfy

the fractions calculated by the previous two-Gaussian decomposing method (shown in Fig. S9(a)).

Water molecules with the order parameter less than the cut-off ζ belong to the HDL component

and the rest belong to the LDL component. This method requires the cut-off ζ to change with the

temperature as shown in Fig. S9(b).

a b c

Figure S9: (a) Our approach to differentiate the LDL and HDL at the molecular level. Upper panel:

the two-Gaussian decomposing method to calculate the fractions of HDL and LDL. Lower panel:

a cut-off ζ is chosen to separate HDL from LDL. The cut-off ζ is determined such that the fractions

of HDL and LDL matches the two-Gaussian decomposing method. (b) The cut-off ζ is quite stable

above 260K (-13 ◦C) while it changes significantly below this temperatures. (c) The Voronoi cell

volume distributions of the three components in one typical sample at 25 ◦C.

Then we calculated the Voronoi cell volume of each water molecule based on the positions

of the oxygen atoms. For the oxygen atoms at the boundary of simulation box, their neighboring

oxygen atoms should be counted based on the periodic boundary condition, and then their Voronoi
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cells are constructed. The Voronoi cell calculation is performed with the software Matlab 75. The

distribution of the Voronoi cell volume is shown in Fig. S9(c), and apparently the third component

has the smallest volume while the LDL component has the largest volume. Their densities are

calculated by their mean Voronoi cell volumes, as shown in the main text Fig. 4(f): The 5-H-bond

or 3rd component exhibits an ultra-high density significantly larger than both HDL and LDL.

11 PCA on I(q) curves for water system

In general the XRD scattering intensity I(q) is the quantity obtained in actual scattering ex-

periments, which has contributions from both intramolecular and intermolecular correlations, as

Eq. (10) shows for the water system. The relationship between the normalized intensity Inor(q)

and S(q) is described by the formula S(q)−1 = [Inor(q)−F 2(q)]/[2fH(q)+fO(q)]
2. We note that

in our water samples the normalized intensity Inor(q) and S(q) are linearly correlated because the

factors F (q), fH(q) and fO(q) in the formula are only related to the structure of one single water

molecule and thus they keep unchanged with temperature and component variations. Therefore, in

water system all the results of PCA on I(q) curves should be equivalent to S(q) curves. We can

directly perform PCA on water’s I(q) curves at different temperatures and compare the results with

S(q) counterparts. First, there are two large eigenvalues meaning that there are two main reasons

for water structure’s evolution at different temperatures, as show in Fig. S10(a). The dominant rea-

son is mutual conversion between HDL and LDL, which results in the linear relationship between

the LDL fraction s and p1 (the projection pre-factor to the 1st eigenmode), as show in Fig. S10(b).

Second, according to the analysis in the main text, the 1st eigenmode should correspond to the dif-
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Figure S10: (a) The eigenvalues from large to small. The first two are significantly larger than

the rest. (b) LDL fraction has a linear relation with the projection pre-factor p1. (c) Top to bot-

tom panels show HDL system’s I(q), LDL system’s I(q) and the first eigenmode. (d) The first

eigenmode agrees well with the curve obtained by the LDL curve minus the HDL curve. (e) In-

set: the 5-H-bond fraction f3 from simulation and the projection pre-factor p2 from experiment

are both non-monotonic and having similar proile. Main panel: the non-monotonic p2 matches

20.63 × f3 − f1 nicely. (f) The main peaks in the second eigenmode correspond nicely to the

isosbestic point and the main peak of I5H(q).
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ference of HDL and LDL, and the results of PCA on I(q) curves also support this interpretation, as

show in Fig. S10(c) and (d). Third, the 2nd eigenvalue is related to the fraction change of the 3rd

component, 5-H-bond structure. Therefore, p2 directly correlates to the linear combination of the

fractions, f3 and f1: p2 ∝ 20.63× f3 − f1, as show in Fig. S10(e). This formula is identical to the

one for S(q)’s PCA analysis in the main text and quantitatively proves the equivalence of I(q) and

S(q) results. At last, the intensity curves calculated from the 5-H-bond molecules as origins also

exhibit main features that match the 2nd eigenmode, as shown in Fig. S10(f). This agrees with the

S(q) result in Fig. 4(b) in the main text. To conclude, all the reproducible results unambiguously

show that the PCA analysis of I(q) and S(q) curves in our water samples are equivalent.
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