Supporting Information

Light-Assisted Anti-Wrinkling on Azobenzene-Containing Polyblend Films

Juanjuan Wang,^{1,#} Haipeng Ji,^{2,#} Yanqian Guo¹, Bin Wang,³ Xue Han,¹ Lele Li,⁴ Fuqi Wu,³ Jingqing Li,^{4,*} and Conghua Lu^{1,*}

¹ School of Materials Science and Engineering, Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin 300384, China.
*E-mail: chlu@tju.edu.cn

² No 46 Institute, China Aerospace Science and Industry Corporation Sixth Academy, Huhhot 010010, China.

³ School of Science, Tianjin Chengjian University, Tianjin 300384, China.

⁴ School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
*E-mail: jqli11103@tju.edu.cn

Figure S1. The GPC (a) and DSC (b) curves of the obtained PAAB.

Figure S2. (a) Typical SEM image of the cross-section of the PAAB_x-PMMA_{1-x} film when x = 0.6. (b) The relation of the thickness (h_f) of PAAB_x-PMMA_{1-x} films with x.

Figure S3. UV-Vis absorption spectrum evolution (a, b) and the relationship between the relative absorbance A_t/A_0 and time *t* (c, d) of the PAAB film with visible light irradiation at *I*= 5 mW/cm² (a, c) and its recovery in darkness (b, d). Inset in (a,b) is the corresponding spectrum magnification around the λ_{max} . The solid line in (c,d) is the corresponding fitting curve.

The photoisomerization of azo-moieties is sensitive to the local environment surrounding the moieties, which can be evaluated by measuring the isomerization rate.¹ From Figure S3a,b, the absorbance at λ_{max} before the light irradiation (A_0) and after the irradiation for different time (A_t) can be obtained. The relative absorbance (A_t/A_0) of the samples represents the relative amount of the *trans* isomers remaining at the time *t*. Furthermore, the variations of A_t/A_0 with *t* indicate the kinetics of the photoisomerization. For Figure S3c,d, the variations can be best fitted by the first-order exponential decay function

$$A_t/A_0 = A' + A'' \exp(-t/T)$$
 (S1)

where *T* is the characteristic time of the decay process. The R-Square (COD) values in the above fittings are >0.99. *T* obtained from the curve fitting is 0.30 min and 39.6 min for Figure S3c,d, respectively.

Figure S4. Optical images of as-prepared PAAB_x-PMMA_{1-x} films on the PDMS substrate with x = 0.20 (a), 0.50 (b), 0.67 (c), respectively.

Figure S5. The dependence of A_{max} on x. The solid line is from the linear regression of data pairs.

Figure S6. UV-Vis absorption spectrum evolution (a, b) and the relationship between the relative absorbance A_t/A_0 and time *t* (c, d) of the PAAB_{0.5}-PMMA_{0.5} film with visible light irradiation at *I*= 5 mW/cm² (a, c) and its recovery in darkness (b, d). The inset in (a,b) is the corresponding spectrum magnification around the λ_{max} . The solid line in (c,d) is the corresponding fitting curve.

For Figure S6c,d, the variations of A_t/A_0 with t can also be best fitted by the first-order exponential decay function (Equation (S1)), where both COD values are >0.97. T obtained from the curve fitting is 0.46 min and 44.9 min for Figure S6c,d, respectively. Comparing with the PAAB film, the photo-induced *trans* \rightarrow *cis* isomerization and thermal-induced *cis* \rightarrow *trans* isomerization rate decline for the PAAB_{0.5}-PMMA_{0.5} film.

Figure S7. Optical images of the (PAAB_{0.5}-PMMA_{0.5})/PDMS bilayer after releasing prestrain with $\varepsilon = 10\%$ during visible light irradiation at *i* = 0 (a), 3 (b), 12 (c) MPa, respectively.

Figure S8. (a-e) Optical images of the PMMA/PDMS bilayer after releasing prestrain with $\varepsilon = 2\%$ during the visible light irradiation at *i* = 0 (a), 1.2 (b), 3 (c), 9 (d) and 12 (e) MPa, respectively. (f) Plots of λ_c as a function of *i*.

Figure S9. Optical images of the critical wrinkling $PAAB_{0.5}$ -PMMA_{0.5} film on the PDMS substrate with *i*: 0 (a), 3 (b), 12 (c) MPa, respectively.

Figure S10. The dependence of λ_c/λ_0 (a) and $\varepsilon_c/\varepsilon_0$ (b) on *x* in the PAAB_{*x*}-PMMA_{1-*x*} films under different experiment condition *i* employed. The dashed lines were drawn to visualize the general trend.

REFERENCES

 Y. Deng, Y. Li, X. Wang, Colloidal sphere formation, H-aggregation, and photoresponsive properties of an amphiphilic random copolymer bearing branched azo side chains. *Macromolecules* 2006, *39*, 6590-6598.