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Scheme S1. Synthesis of Fmoc-X-Phe-DAP derivatives 2X–4X. 

 

The synthesis of Fmoc-X-Phe-Dap derivatives 2X–4X was completed using the strategy outlined 
in Scheme S1, a slightly modified version of our previously reported synthetic method.1 Details 
for the preparation of 2F are provided as a representative example. Characterization data for 3F 
may be found in a prior report.2 

 

 

Fmoc-2F-Phe-DAP (2F): 

Fmoc-2F-Phe-OH (0.2617 g, 0.65 mmol) and hydroxybenzotriazole (HOBt) (0.1260 g, 0.93 
mmol) were dissolved in 2.5 mL of dichloromethane/dimethylformamide (1:1 DCM/DMF) and 
cooled in an ice bath while stirring. Then, tert-butyl N-(3-aminopropyl)carbamate (0.125 g, 0.72 
mmol) was dissolved in 2.5 mL of 1:1 DCM/DMF and added to the reaction flask. 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide hydrochloride (EDC·HCl) (0.1237 g, 0.65 mmol) was 
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dissolved in 5 mL of 1:1 DCM/DMF and added dropwise to the reaction mixture at a rate of 
approximately 1 drop every few seconds using a dropper funnel, then the mixture was left to stir 
overnight at room temperature. The following day, the mixture was concentrated by rotary 
evaporation to remove DCM, then diluted with 25 mL of ethyl acetate and washed twice with 25 
mL of each of the following solutions: 5% aqueous acetic acid, 10% aqueous sodium bicarbonate, 
and saturated brine. The organic layer was dried over anhydrous sodium sulfate, which was 
removed by filtration. The resulting solution was concentrated by rotary evaporation to yield the 
crude product, which was purified using column chromatography (silica gel, ethyl acetate/hexanes) 
to yield a white solid (0.2344 g, 0.42 mmol, 65% yield).  

The product obtained from purification (0.2344 g, 0.42 mmol) was dissolved in 10 mL of 
dichloromethane/methanol (3:1 DCM/MeOH). Then, 5.2 mL of 4 M HCl in dioxane (20.9 mmol) 
was added to the reaction mixture and it was stirred at room temperature for 30 minutes. The 
solution was poured into a 50 mL centrifuge tube and concentrated by rotary evaporation until 
there was about 5 mL of solution in the tube. Cold diethyl ether (20 mL) was added to precipitate 
the product, the tube was centrifuged for 10 minutes, and the supernatant was discarded. The pellet 
was resuspended in another 20 mL of cold diethyl ether, centrifuged, and decanted two more times 
for a total of three washes. The pellet was dried under vacuum to yield the desired product 2F as 
a white solid (0.1945 g, 0.39 mmol, 94% yield, 61% yield across all steps).   

1H NMR (500 MHz, DMSO-d6): δ 8.21 (t, J = 5.1 Hz, 1H), 8.00 (broad s, 3H), 7.88 (d, J = 7.5 Hz, 
2H), (d, J = 8.5 Hz, 1H), 7.65 (t, J = 8.5 Hz, 2H), 7.45–7.37 (m, 2H), 7.36–7.03 (m, 6H), 4.33–
4.07 (m, 4H), 3.22–3.02 (m, 3H), 2.86 (dd, J = 12.8 Hz, 10.1 Hz, 1H), 2.77–2.65 (m, 2H), 1.75–
1.61 (m, 2H) ppm; 13C NMR (125 MHz, DMSO-d6): δ 173.4, 161.9 (d, J = 243 Hz), 156.9, 144.9, 
141.8, 132.9, 129.7 (d, J = 8.1 Hz), 128.8, 126.5 (d, J = 15.5 Hz), 125.8 (d, J = 15.1 Hz), 125.2, 
121.3, 116.2 (d, J = 21.6 Hz), 66.9, 60.0, 47.7, 37.7, 36.9, 32.1, 28.3 ppm; 19F NMR (376 MHz, 
DMSO-d6): δ -117.91–-118.10 (m) ppm; HRMS (ESI-TOF) (m/z) 462.2175 (462.2187 calcd for 
C27H29FN3O3 [M]+). 
 

 

Fmoc-2Cl-Phe-DAP (2Cl): 

The product 2Cl was synthesized by the method above starting from Fmoc-2Cl-Phe-OH (0.2724 
g, 0.65 mmol) and was recovered as a white solid (0.3027 g, 0.59 mmol, 91% yield). 

1H NMR (500 MHz, DMSO-d6): δ 8.23–8.14 (m, 1H), 7.98 (broad s, 3H), 7.88 (d, J = 7.4 Hz, 2H), 
7.79 (d, J = 8.5 Hz, 1H), 7.65 (dd, J = 12.5 Hz, 7.6 Hz, 2H), 7.45–7.26 (m, 6H), 7.21 (quintet, J = 
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7.2 Hz, 2H), 4.40–4.05 (m, 4H), 3.24–3.07 (m, 3H), 2.94 (dd, J = 12.4 Hz, 10.2 Hz, 1H), 2.79–
2.66 (m, 2H), 1.77–1.61 (m, 2H) ppm; 13C NMR (125 MHz, DMSO-d6): δ 172.4, 156.9, 144.9 (d, 
J = 4.1 Hz), 141.9, 136.5, 134.6, 132.8, 130.3, 129.6, 128.8, 128.2 (d, J = 21.9 Hz), 126.5 (d, J = 
12.9 Hz), 121.3, 66.9, 55.4, 47.7, 37.7, 36.9, 36.4, 28.3 ppm; HRMS (ESI-TOF) (m/z) 478.1884 
(478.1892 calcd for C27H29ClN3O3 [M]+). 
 

 

Fmoc-2Br-Phe-DAP (2Br): 

The product 2Br was synthesized by the method above starting from Fmoc-2Br-Phe-OH (0.3010 
g, 0.65 mmol) and was recovered as a white solid (0.2949 g, 0.53 mmol, 82% yield). 
1H NMR (500 MHz, DMSO-d6): δ 8.15 (t, J = 5.1 Hz, 1H), 8.00 (broad s, 3H), 7.88 (d, J = 7.5 Hz, 
2H), 7.80 (d, J = 8.6 Hz, 1H), 7.67 (dd, J = 12.5 Hz, 7.6 Hz, 2H), 7.57 (d, J = 8.0 Hz, 1H), 7.45–
7.27 (m, 5H), 7.24 (t, J = 7.4 Hz, 1H), 7.14 (t, J = 7.6 Hz, 1H), 4.42–4.05 (m, 4H), 3.24–3.07 (m, 
3H), 2.95 (dd, J = 13.1 Hz, 10.1 Hz, 1H), 2.80–2.67 (m, 2H), 1.78–1.63 (m, 2H) ppm; 13C NMR 
(125 MHz, DMSO-d6): δ 172.3, 156.9, 144.9 (d, J = 5.3 Hz), 141.9, 138.2, 133.6, 132.8, 129.8, 
128.8, 128.6, 128.2, 126.5 (d, J = 12.1 Hz), 121.3, 66.9, 55.5, 47.7, 38.8, 37.7, 36.9, 28.2 ppm; 
HRMS (ESI-TOF) (m/z) 522.1382 (522.1387 calcd for C27H29BrN3O3 [M]+).  
 

 

Fmoc-3Cl-Phe-DAP (3Cl): 

The product 3Cl was synthesized by the method above starting from Fmoc-3Cl-Phe-OH (0.2724 
g, 0.65 mmol) and was recovered as a white solid (0.2361 g, 0.46 mmol, 71% yield). 
1H NMR (500 MHz, DMSO-d6): δ 8.38–8.31 (m, 1H), 8.02 (broad s, 3H), 7.88 (d, J = 7.4 Hz, 2H), 
7.75 (d, J = 8.4 Hz, 1H), 7.63 (t, J = 8.7 Hz, 2H), 7.51–7.22 (m, 8H), 4.29–4.04 (m, 4H), 3.21–
3.08 (m, 2H), 3.05–2.94 (m, 1H), 2.86–2.69 (m, 3H), 1.79–1.63 (m, 2H) ppm; 13C NMR (125 
MHz, DMSO-d6): δ 172.7, 157.0, 144.9 (d, J = 7.6 Hz), 141.9 (d, J = 21.5 Hz), 133.9, 131.1, 130.3, 
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129.2, 128.8, 128.2, 127.5, 126.5 (d, J = 14.5 Hz), 121.3, 66.9, 57.4, 47.7, 38.3, 37.8, 36.9, 28.4 
ppm; HRMS (ESI-TOF) (m/z) 478.1884 (478.1892 calcd for C27H29ClN3O3 [M]+).  
 

 

Fmoc-3Br-Phe-DAP (3Br): 

The product 3Br was synthesized by the method above starting from Fmoc-3Br-Phe-OH (0.3010 
g, 0.65 mmol) and was recovered as a white solid (0.2222 g, 0.40 mmol, 62% yield). 
1H NMR (500 MHz, DMSO-d6): δ 8.32 (t, J = 5.1 Hz, 1H), 7.98 (broad s, 3H), 7.88 (d, J = 7.5 Hz, 
2H), 7.74 (d, J = 8.4 Hz, 1H), 7.63 (t, J = 9.0 Hz, 2H), 7.56 (s, 1H), 7.45–7.19 (m, 7H), 4.28–4.05 
(m, 4H), 3.15 (dt, J = 6.1 Hz, 5.8 Hz), 2.98 (dd, J = 13.6 Hz, 3.6 Hz), 2.86–2.69 (m, 3H), 1.78–
1.64 (m, 2H) ppm; 13C NMR (125 MHz, DMSO-d6): δ 172.7, 157.0, 144.9 (d, J = 7.4 Hz), 142.3, 
141.8, 133.1, 131.4, 130.4, 129.6, 128.8, 128.2, 126.5 (d, J = 14.7 Hz), 122.6, 121.3, 66.9, 57.4, 
47.7, 38.3, 37.8, 36.9, 28.4 ppm; HRMS (ESI-TOF) (m/z) 522.1381 (522.1387 calcd for 
C27H29BrN3O3 [M]+). 
 

 

Fmoc-4F-Phe-DAP (4F): 

The product 4F was synthesized by the method above (scaled up) starting from Fmoc-4F-Phe-OH 
(2.30 g, 5.67 mmol) and was recovered as a white solid (1.90 g, 3.82 mmol, 67% yield). 

1H NMR (500 MHz, DMSO-d6): δ 8.29 (t, J = 4.8 Hz, 1H), 7.99 (broad s, 3H), 7.88 (d, J = 7.5 Hz, 
2H), 7.68 (d, J = 8.5 Hz, 1H), 7.66–7.58 (m, 2H), 7.45–7.20 (m, 6H), 7.08 (t, J = 8.4 Hz, 2H), 
4.23–4.06 (m, 4H), 3.14 (dt, J = 6.0 Hz, 6.0 Hz, 2H) 2.97 (dd, J = 13.5 Hz, 3.8 Hz, 1H), 2.85–2.68 
(m, 3H), 1.77–1.63 (m, 2H) ppm; 13C NMR (125 MHz, DMSO-d6): δ 172.8, 162.1 (d, J = 240 Hz), 
144.9 (d, J = 11.8 Hz), 141.9, 135.5, 132.2 (d, J = 7.6 Hz), 128.8, 128.2, 126.5 (d, J = 9.3 Hz), 
121.3, 115.9 (d, J = 20.8 Hz), 66.8, 57.6, 47.7, 37.9, 37.8, 28.4 ppm; 19F NMR (376 MHz, DMSO-
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d6): δ -116.94–-117.08 (m) ppm; HRMS (ESI-TOF) (m/z) 462.2176 (462.2187 calcd for 
C27H29FN3O3 [M]+).  
 

 

Fmoc-4Cl-Phe-DAP (4Cl): 

The product 4Cl was synthesized by the method above starting from Fmoc-4Cl-Phe-OH (0.2724 
g, 0.65 mmol) and was recovered as a white solid (0.2315 g, 0.45 mmol, 70% yield). 

1H NMR (500 MHz, DMSO-d6): δ 8.31 (t, J = 5.1 Hz, 1H), 7.97 (broad s, 3H), 7.88 (d, J = 7.5 Hz, 
2H), 7.70 (d, J = 8.5 Hz, 1H), 7.63 (t, J = 7.0 Hz, 2H), 7.45–7.22 (m, 8H), 4.23–4.08 (m, 4H), 3.14 
(dt, J = 5.9 Hz, 5.7 Hz), 2.97 (dd, J = 13.6 Hz, 3.5 Hz), 2.85–2.69 (m, 3H), 1.77–1.64 (m, 2H) 
ppm; 13C NMR (125 MHz, DMSO-d6): δ 172.7, 160.0, 144.9 (d, J = 13.5 Hz), 141.9, 138.4, 132.3, 
132.2, 129.2, 128.8, 128.2, 126.5 (d, J = 9.4 Hz), 121.3, 66.8, 57.4, 47.7, 38.0, 37.8, 36.9, 28.4 
ppm; HRMS (ESI-TOF) (m/z) 478.1884 (478.1892 calcd for C27H29ClN3O3 [M]+).  
 

 

Fmoc-4Br-Phe-DAP (4Br): 

The product 4Br was synthesized by the method above (scaled up) starting from Fmoc-4Br-Phe-
OH (1.20 g, 2.58 mmol) and was recovered as a white solid (1.17 g, 2.09 mmol, 81% yield). 
1H NMR (500 MHz, DMSO-d6): δ 8.33 (t, J = 5.1 Hz, 1H), 8.02 (broad s, 3H), 7.88 (d, J = 7.5 Hz, 
2H), 7.69 (d, J = 8.5 Hz, 1H), 7.63 (t, J = 7.5 Hz, 2H), 7.48–7.20 (m, 8H), 4.25–4.05 (m, 4H), 3.15 
(dt, J = 6.0 Hz, 5.6 Hz), 2.97 (dd, J = 13.7 Hz, 3.8 Hz, 1H), 2.83–2.69 (m, 3H), 1.79–1.63 (m, 2H) 
ppm; 13C NMR (125 MHz, DMSO-d6): δ 172.7, 157.0, 144.9 (d, J = 14.2 Hz), 141.9, 138.8, 132.4 
(d, J = 73.4 Hz), 128.5 (d, J = 73.8 Hz), 126.5 (d, J = 9.4 Hz), 121.3, 120.7, 66.8, 57.3, 47.7, 38.1, 
37.8, 36.9, 28.4 ppm; HRMS (ESI-TOF) (m/z) 522.1381 (522.1387 calcd for C27H29BrN3O3 [M]+). 
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Figure S1. 1H NMR spectrum of Fmoc-2F-Phe-DAP (2F). 
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Figure S2. 13C NMR spectrum of Fmoc-2F-Phe-DAP (2F). 



S10 
 

 

Figure S3. 19F NMR spectrum of Fmoc-2F-Phe-DAP (2F). 
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Figure S4. High-resolution mass spectrum of Fmoc-2F-Phe-DAP (2F). 
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Figure S5. 1H NMR spectrum of Fmoc-2Cl-Phe-DAP (2Cl). 
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Figure S6. 13C NMR spectrum of Fmoc-2Cl-Phe-DAP (2Cl). 
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Figure S7. High-resolution mass spectrum of Fmoc-2Cl-Phe-DAP (2Cl). 
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Figure S8. 1H NMR spectrum of Fmoc-2Br-Phe-DAP (2Br). 
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Figure S9. 13C NMR spectrum of Fmoc-2Br-Phe-DAP (2Br). 
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Figure S10. High-resolution mass spectrum of Fmoc-2Br-Phe-DAP (2Br). 
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Figure S11. 1H NMR spectrum of Fmoc-3Cl-Phe-DAP (3Cl). 
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Figure S12. 13C NMR spectrum of Fmoc-3Cl-Phe-DAP (3Cl). 
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Figure S13. High-resolution mass spectrum of Fmoc-3Cl-Phe-DAP (3Cl). 
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Figure S14. 1H NMR spectrum of Fmoc-3Br-Phe-DAP (3Br). 
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Figure S15. 13C NMR spectrum of Fmoc-3Br-Phe-DAP (3Br). 
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Figure S16. High-resolution mass spectrum of Fmoc-3Br-Phe-DAP (3Br). 



S24 
 

 

Figure S17. 1H NMR spectrum of Fmoc-4F-Phe-DAP (4F). 
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Figure S18. 13C NMR spectrum of Fmoc-4F-Phe-DAP (4F).  
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Figure S19. 19F NMR spectrum of Fmoc-4F-Phe-DAP (4F).  
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Figure S20. High-resolution mass spectrum of Fmoc-4F-Phe-DAP (4F).  
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Figure S21. 1H NMR spectrum of Fmoc-4Cl-Phe-DAP (4Cl). 
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Figure S22. 13C NMR spectrum of Fmoc-4Cl-Phe-DAP (4Cl). 
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Figure S23. High-resolution spectrum of Fmoc-4Cl-Phe-DAP (4Cl). 
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Figure S24. 1H NMR spectrum of Fmoc-4Br-Phe-DAP (4Br). 
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Figure S25. 13C NMR spectrum of Fmoc-4Br-Phe-DAP (4Br).  
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Figure S26. High-resolution mass spectrum of Fmoc-4Br-Phe-DAP (4Br).  
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Figure S27. Analytical HPLC traces of compounds 2X–4X (215 nm).  

Table S1. Analytical HPLC method conditions. Each compound was injected onto an analytical 
HPLC instrument (Shimadzu 2010A) equipped with a Phenomenex Gemini 5 mmC18 column 
(250 × 4.6mm). A gradient of water (component A) and acetonitrile (component B), both 
containing 0.05% trifluoroacetic acid, was used as the mobile phase at a flow rate of 1 mL min-1 
and UV detection was monitored at 215 nm.  

Method Time (min) %B 
0 5 
5 5 
15 95 
20 95 
22 5 
25 5 
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Figure S28. TEM and digital images of assemblies of compounds 2X–4X taken 1 week after 
mixing the solution with sodium chloride to initiate self-assembly. (A) Fmoc-2F-Phe-DAP (2F); 
(B) Fmoc-2Cl-Phe-DAP (2Cl); (C) Fmoc-2Br-Phe-DAP (2Br); (D) Fmoc-3F-Phe-DAP (3F); (E) 
Fmoc-3Cl-Phe-DAP (3Cl); (F) Fmoc-3Br-Phe-DAP (3Br); (G) Fmoc-4F-Phe-DAP (4F); (H) 
Fmoc-4Cl-Phe-DAP (4Cl); (I) Fmoc-4Br-Phe-DAP (4Br). 

 

Figure S29. Distribution of nanotube widths in assemblies of Fmoc-4Cl-Phe-DAP (4Cl). 

0

5

10

15

20

25

30

35

40

31
-3
6

36
-4
1

41
-4
6

46
-5
1

51
-5
6

56
-6
1

61
-6
6

66
-7
1

71
-7
6

76
-8
1

81
-8
6

86
-9
1

91
-9
6

96
-1
01

10
1-
10
6

10
6-
11
1

11
1-
11
6

11
6-
12
1

12
1-
12
6

# 
of

 tu
be

s

Tube Width (nm)



S36 
 

 

Figure S30. Strain sweep data collected via oscillatory rheology of 10 mM hydrogels of Fmoc-X-
Phe-DAP derivatives (2X–4X) 24 hours after assembly. G′ and G″ values (Pa) are represented by 
closed circles and open circles, respectively. (A) Fmoc-2F-Phe-DAP (2F); (B) Fmoc-2Cl-Phe-
DAP (2Cl); (C) Fmoc-2Br-Phe-DAP (2Br); (D) Fmoc-3F-Phe-DAP (3F); (E) Fmoc-3Cl-Phe-
DAP (3Cl); (F) Fmoc-3Br-Phe-DAP (3Br); (G) Fmoc-4F-Phe-DAP (4F); (H) Fmoc-4Cl-Phe-
DAP (4Cl); (I) Fmoc-4Br-Phe-DAP (4Br). 
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Figure S31. Frequency sweep data collected via oscillatory rheology of 10 mM hydrogels of 
Fmoc-X-Phe-DAP derivatives (2X–4X) 24 hours after assembly. G′ and G″ values (Pa) are 
represented by closed circles and open circles, respectively. Each plot contains three distinct 
measurements. Values at the upper end of the frequency sweep were cut off when the raw phase 
angle increased above 175º as recommended for the TA DHR series of rheometers, since values 
beyond this point are dominated by the instrument inertial torque instead of the sample torque 
(most prominently seen in samples with low G′/G″ values).3 (A) Fmoc-2F-Phe-DAP (2F); (B) 
Fmoc-2Cl-Phe-DAP (2Cl); (C) Fmoc-2Br-Phe-DAP (2Br); (D) Fmoc-3F-Phe-DAP (3F); (E) 
Fmoc-3Cl-Phe-DAP (3Cl); (F) Fmoc-3Br-Phe-DAP (3Br); (G) Fmoc-4F-Phe-DAP (4F); (H) 
Fmoc-4Cl-Phe-DAP (4Cl); (I) Fmoc-4Br-Phe-DAP (4Br). 
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