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I. MODELS AND METHODS

In this work, we have performed extensive molecular
dynamics simulation of Binary mixture of Lennard-Jones
(BMLJ) particles interacting via the following potential.
The potential is smoothed such that 2nd derivative of the
potential will be continuous at the cut off radius rc,

φ(r) =
{

4εαβ
[(σαβ

r

)12 −
(σαβ

r

)6 + c0 + c2r
2
]

, r < rc

0 , r ≥ rc
(1)

Here, α and β refers to large (A-type) or small (B-type)
particles respectively. The ratio of A : B = 80 : 20 is
maintained. This model is well known in the literature
as the Kob-Andersen model (3dKA) [1]. The interaction
strengths and particle diameters are εAA = 1.0, σAA =
1.0, εAB = 1.5 , σAB = 0.8, and εBB = 0.5, σBB = 0.88,
and rc = 2.5σAB . The number density (ρ) of the system
is taken to be 1.2 for all the simulations. The units of
length, energy and time are given by σAA, εAA and

√
σ2
AA

εAA
respectively. The integration step size is chosen to be
δt = 0.005 for all our simulations.

A. Introducing Activity: Run and Tumble particle
model (RTP)

Activity in this study is introduced in the system by
randomly choosing the c fraction of particles as active
particles. The active particles get an extra active force
f0 along any random direction while keeping zero vector
sum of total active forces. The direction of the active
force changes after the persistent time τp. The active
force on ith particle reads as,

FAi = f0
(
kixx̂+ kiy ŷ + kiz ẑ

)
, (2)

where kix, kiy, kiz are randomly chosen from ±1, af-
ter every persistent time interval. Thus an active parti-
cle can have one of the eight possible directions. Also,
to maintain the momentum conservation of the system,
there should be an even number of active particles in
the system with total active force equated to zero, which
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mathematically implies,
∑
α,i k

i
α = 0. Thus, the total

activity in our system is defined by three parameters,
the active force magnitude f0, the concentration of ac-
tive particles c, and the persistent time τp. In this study,
we have first varied f0 in the range f0 ∈ [0.0− 2.5] while
keeping c = 0.1 and τp = 1.0 constant. Then the concen-
tration c is varied in range c ∈ [0.0 − 0.6] while keeping
f0 = 1.0 and τp = 1.0. Note that we haven’t changed the
persistent time in this study. As large persistent time
leads to a complete dynamical behaviour of the system
as reported in [2], we kept it small and fixed to study the
effect of activity in the glassy regime only.

II. THERMOSTAT

The thermostat is one of the main challenges in non-
equilibrium simulations. In particular, it seems that var-
ious thermostats fail to maintain a constant temperature
in the presence of active forces. Thus, we have used the
three-chain Nosé-Hoover thermostat [3] to get the desired
temperature which is known to maintain true canoni-
cal ensemble fluctuations in equilibrium. The relaxation
time of the thermostat is set to 10 − 20 times the sim-
ulation time-step. We also checked another thermostat
known as Gaussian thermostat [4], which is also found
to be able to control the temperature well in the pres-
ence of activity. The results obtained using these two
thermostats are quantitatively similar.

III. OVERLAP CORRELATION FUNCTION,
Q(t)

To characterize the system’s dynamical properties, we
have computed the two-point density-density correlation
function of the system. For simplicity, we have computed
the overlap correlation function Q(t), defined as

Q(t) = 1
N

N∑
i=1

w(|~ri(0)− ~ri(t)|), (3)

where w(x) is a window function, and it is one if x < a,
where a is a parameter that is chosen to remove the pos-
sible initial decorrelation that can happen due to the fast
vibrational motion of the particles. ~ri(t) is the position
vector of particle i. The value of ‘a’ is typically cho-
sen from the plateau region in the system’s ‘mean-square
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displacement (MSD)’, where MSD is defined by the fol-
lowing expression.

〈
|∆r(t)|2

〉
=
〈

1
N

N∑
i=1
|~ri(t)− ~ri(0)|2

〉
(4)

In the supercooled liquid regime, the MSD shows a
plateau representing the cage exploration of the system
during the transition of the particle dynamics from the
ballistic to diffusion region. One often chooses this value
to maximize the signal strength of the fluctuations of
Q(t), which is defined later as χ4(t). We will discuss this
in detail in the subsequent paragraph. Typically, the
value of ‘a’ is chosen to be 0.3. This relaxation time, τα,
is obtained as 〈Q(t = τα)〉 = e−1 where 〈· · · 〉 refers to en-
semble average. The system is equilibrated long enough
(typically ∼ 50τα) so that the system’s dynamic is er-
godic in nature. We did further 4 τα long runs for gath-
ering data. We averaged our data over 32 statistically
independent ensemble runs for all systems N ≤ 10000
and 10 simulations runs for N > 10000 respectively.

IV. FOUR-POINT CORRELATION FUNCTION,
χ4(t)

Four-point correlation susceptibility, χ4(t) is the mea-
sure of the fluctuation in two-point correlation function
Q(t). It is defined as

χ4(t) = N
[
〈Q(t)2〉 − 〈Q(t)〉2

]
. (5)

We averaged χ4(t) over 32 ensembles for simulations with
N ≤ 10000 particles and 10 ensembles for N > 10000.

Note that χ4(t) is one of the best ways to characterize
the degree of heterogeneity in a system. This typically
quantifies the sizes of different regions with fast and slow
dynamics. The time at which χ4(t) peaks is close to
the relaxation time τα that is χ4(t = τα) ' χp4. The
increasing system size shows one more peak at shorter
timescale around the β-relaxation regime. It is found
that peak at short timescale can be enhanced by a suit-
able choice of the cut-off parameter ‘a’. For a = 0.3, most
of the small-amplitude motion of the particle is masked,
which is important to pick up the long-wavelength mode
at low temperatures. To enhanced the peak height of
χ4(t) at short timescale we have chosen a = 0.18. The
peak at short timescale is defined as χP1

4 and the time
corresponding to the first peak (maxima) of χ4(t) as t∗.

V. β-RELAXATION TIME (τβ)

The β-relaxation time scale τβ , is defined as the time
when a point of inflection appears in the log-log plot of
MSD with respect to time [5]. Thus it is usually calcu-
lated as the time where the minima of log-derivative of
MSD with time, dlog

〈
|∆r(t)|2

〉
/dlogt appears.

VI. CAGE-RELATIVE DISPLACEMENT

To separate out the collective behaviour that may
arise from the vibrational dynamics, especially at a short
timescale, we have computed the cage-relative (CR) dis-
placement of the individual particles, which is defined as
~ri,CR(t).

~ri,CR(t) = [~ri(t)− (~ri,nn(t)− ~ri,nn(0))] (6)

where, ~ri,nn(t) is center of mass position of Nnn nearest
neighbours (nn) at time t and it is defined as,

~ri,nn(t) = 1
Nnn

Nnn∑
j=1

[~rj(t)− ~rj(0)]. (7)

Here we have used the cut-off value rnnc = 1.3 at the
initial time to get the Nnn number of nearest neighbours
and then track those neighbour particle’s motion with
respect to that time origin. This modified cage- relative
displacement quantity has then been used to compute
both cage-relative Q(t) and χ4(t).

VII. BLOCK ANALYSIS

In this work, we have done extensive finite-size scal-
ing analysis using the Block analysis method [6]. In this
method, the whole system is divided into smaller sub-
systems, and then one studies all the above-mentioned
correlation functions to incorporate some of the impor-
tant fluctuations. For example, χ4(t) will have contri-
butions coming from a number of particle fluctuations,
density fluctuations, the concentration of particle species
fluctuations, temperature fluctuations, etc. This is also
one of the most natural ensembles, especially in exper-
iments in which a subsystem is typically probed using
various imaging methods. The two-point correlation for
one subsystem can be redefined similarly as,

Q(LB , t) = 1
ni

ni∑
j=1

[w(rj(t)− rj(0))], (8)

where LB = (N/NB)1/3 and, NB is the number of sub-
systems referred henceforth as blocks. ni is the number
of particles in the block with level i. Now the average
correlation of the function will be just

〈Q(LB , t)〉 = 1
NB

NB∑
i=1

Q(LB , t). (9)

Similarly, the four-point susceptibility per particle for
each block can be written as

χ′4(LB , t) = [
〈
Q(LB , t)2〉− 〈Q(LB , t)〉2]. (10)
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So the averaged four-point dynamic susceptibility of the
sub-system (LB) will be given by

χ4(LB , t) =
(
N

NB

)
[χ′4(LB , t)] . (11)

In this case 〈· · · 〉 denotes averages over different grand
canonical ensembles of size LB .

VIII. CHOICE OF TEMPERATURE FOR
DIFFERENT ACTIVITY

To compare the effect of different activity we have fixed
the relaxation time τα for all the systems. For which we
have looked at the temperature dependence of τα for dif-
ferent value of activity parameter Ω = cf2

0 τp. Here c is
the concentration of the active particles, f0 is the magni-
tude of the applied active force, and τp is the persistent
time over which the directions of active forces change
randomly. The change of τα for different T can be fitted
well via VFT (Vogel-Fulcher-Tammann) fitting function
(see top panels of Fig.1)

τα = τ0 exp[A/(T − T0)]. (12)

By using the above fitting equation, we can find the tem-
perature corresponding to a fixed relaxation time τα for a
different activity. Here we have fixed the relaxation time
τα corresponding to T = 0.45 of a passive system, which
is around τα ∼ 2200 for N = 1000 particles. Firstly,
the changes because of f0 = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 has
been studied for c = 0.1, and, τp = 1.0, as shown in
top left panel of Fig.1 and then the changes because
of c = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 are studied for fixed
f0 = 1.0, and, τp = 1.0 as shown in the top right panel of
Fig.1. Subsequently, we choose the temperatures so that
the relaxation time is the same across various activities
for N = 1000. The corresponding correlation functions
for these temperatures are shown in the bottom panels of
Fig.1. One can see that the two-point correlation func-
tion falls on top of each other. The value of a is 0.3 in
this case.

IX. FIRST PEAK OF DYNAMIC
SUSCEPTIBILITY

As discussed in the main article, we set the value
of a = 0.18 while studying χ4(t) especially at short
timescale. This allowed us to pick the first maximum
of dynamic heterogeneity curve in the early-beta region
very effectively.

As reported in Ref.[7], the degree of activity in the
system can be quantified using a unique parameter Ω =
cf2

0 τp and as long as Ω is same with various possible com-
binations of c, f0 and τp, the dynamical behaviour should

be same. This is also known to be true over a small win-
dow of parameter values. In this study, we found that
over the studied range of parameter values, this unique
activity parameter, Ω faithfully captures the effective de-
gree of activity in the system. The system size depen-
dence of χP1

4 for canonical ensemble is very different from
that of grand canonical ensemble as discussed before. In
the main article we have presented the data pertaining
to the subsystems where all possible fluctuations can be
included while measuring χ4(t). The system size depen-
dence of χP1

4 when calculated for the full system is pre-
sented in Fig.3(a) for reference. Note that dependence is
very similar to that of the subsystems (blocks) and over-
all conclusions do not change qualitatively even if one
works with χP1

4 for the full systems but there are some
issues that we observed while working with full system
size data. Some of these are elaborated in the subsequent
sections.

X. SCALING ANALYSIS OF χP1
4 USING FULL

SYSTEM

In the main text, we presented the finite-size data of
χP1

4 , calculated for the quarter of the system length, i.e.,
L/4. Here in Fig.3, we present the full system size data
and the best scaling collapse possible by using the length
scale obtained from guu(r, t∗). One can see that the larger
system size and larger activity data points are coming out
of the collapse, which we infer are coming because of the
missing fluctuations in the system as well as averaging is-
sues, as mentioned in the main text. Once we take quar-
ter of the systems for the doing the analysis (as shown
in the main article) the issues disappear which can be
due to two reasons. First being that with quarter system
size, one will have much better averaging as well as it is
going to include all possible missing fluctuations that are
important in χ4(t). The second reasons can be that the
system size itself became smaller and if one does simula-
tions of much bigger system sizes then one will again see
the same deviation. At this moment we are constrained
by the larger system size (N = 100000) in our hand due
to computational expense, so ruling out the second pos-
sibility is not possible at this moment. The important
part of this analysis is that the scaling ansatz still seems
to be quite good to describe most part of the data.

XI. DISPLACEMENT-DISPLACEMENT
CORRELATION FUNCTION, guu(r, t)

The dynamical length scale of the system ξd can be
computed independently by computing the displacement-
displacement correlation function guu(r, t∗) at t∗ [8, 9].



4

0.3 0.35 0.4 0.45 0.5 0.55
T

10
1

10
2

10
3

10
4

τ
α

f
0
=0.5

f
0
=1.0

f
0
=1.5

f
0
=2.0

f
0
=2.5

τ
α
=2200

0.3 0.35 0.4 0.45 0.5 0.55
T

10
1

10
2

10
3

10
4

τ
α

c=0.1
c=0.2
c=0.3
c=0.4
c=0.5
c=0.6

τ
α
=2200

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

t

0

0.2

0.4

0.6

0.8

1

Q
(t

) f
0
=0.0,T=0.450

f
0
=0.5,T=0.446

f
0
=1.0,T=0.436

f
0
=1.5,T=0.419

f
0
=2.0,T=0.391

f
0
=2.5,T=0.349

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

t

0

0.2

0.4

0.6

0.8

1

Q
(t

)

c=0.0,T=0.450
c=0.1,T=0.436
c=0.2,T=0.424
c=0.3,T=0.410
c=0.4,T=0.395
c=0.5,T=0.383
c=0.6,T=0.369

(a) (b)

(c) (d)

FIG. 1. (a). Relaxation time τα vs temperature T for different driving f0 with fixed concentration of active particles c = 0.1
and persistent time τp = 1.0. Here the system size N = 1000. (b). Similar results for varying concentration at fixed value
of f0 = 1.0 and τp = 1.0. (c). Two-point correlation function Q(t) vs time t . Here the temperature is chosen such that the
relaxation time (τα) for different activity (f0) is around 2200. (d). Similar plots when we varied the concentration of active
particles c keeping f0 = 1.0 and τp constant.

It is defined as,

guu(r,∆t) =

〈
N∑

i,j=1,j 6=i
ui(0,∆t)uj(0,∆t)δ(r − |rij(0)|)

〉
4πr2∆rNρ〈u(∆t)〉2

(13)
where, ui(t,∆t) = |ri(t + ∆t) − ri(t)|, and 〈u(∆t)〉 =
〈 1
N

∑N
i=1 ui(t,∆t)〉. guu(r,∆t) is calculated at time ∆t =

t∗, along with the usual pair correlation function gr(r)
defined as,

gr(r) =

〈
N∑

i,j=1,j 6=i
δ(r − |rij(0)|)

〉
4πr2∆rNρ (14)

For far enough particles the displacement over a large
enough time duration would be decorrelated and guu

would be equal to gr. So the quantity guu(r,∆t)/gr−1.0
would decay to zero as a function of r. Fit of peak heights
to a function f(r) = Aexp(−r/ξ)/rα should give us a
length scale. But the area under the curve would pro-
vide us better way to obtain the same correlation length.
Fig.4(a) contains the plot of log(guu(r,∆t)/gr− 1.0) cal-
culated for system size of N = 105. The obtained length
scale (ξuu) via fitting and integrated area is plotted in
Fig.4(b) for different activity in the system.
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FIG. 2. (a). Dynamic susceptibility χ4 vs time t, for a passive 3dKALJ model at temperature T = 0.45 for various system
sizes in the range N ∈ [400− 100000]. One can clearly see the huge increase in peak height with increasing system size. Note
that the time at which χ4(t) peaks also increases with the system size. (b). Similar plot for active system with f0 = 2.5 at
temperature where τα ∼ 2200 similar to the passive case. Notice the dramatic enhancement (nearly 10 fold) of the peak with
increasing activity. (c,d) Variation of χ4(t) peak with changing activity for N = 10000 (left) and N = 100000 (right) particle
system.
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FIG. 3. (a) The system size dependence of χP1
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of active particles, c = 0.1. (b) The finite system size data is tried to collapse using the length scale obtained from the
displacement-displacement correlation function (ξuu). The data collapse obtained is not that great as presented for L/4 system
size but does not dismiss the presence of the scaling ansatz.
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displacement-displacement correlation function (Eq.13), and gr is the pair correlation function. Lines in the plots are fit of
peak heights to a function f(x) = a−x/ξ−αlog(x), to obtain the length scale ξ. The obtained length scale can be clearly seen
increasing with increasing activity. This non-linear three parameter fit is not a good idea, because of the errors involved. The
length scale variation with increasing activity can also be obtained as a integrated area of the plots and is shown in panel (b).
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