Supplementary Materials for

Cu₃(BTC)₂ nanoflakes synthesized in ionic liquid/water binary

solvent and their catalytic properties

Zhuizhui Su,^{a,b} Jianling Zhang,^{*a,b} Bingxing Zhang,^{a,b} Xiuyan Cheng,^{a,b} Mingzhao Xu,^{a,b} Yufei Sha,^{a,b} Yanyue Wang,^{a,b} Jingyang Hu,^{a,b} Lirong Zheng^c and Buxing Han^{a,b}

^aBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R.China.

^bSchool of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R.China.

^cBeijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R.China.

*Correspondence to: zhangjl@iccas.ac.cn

Results and Discussion

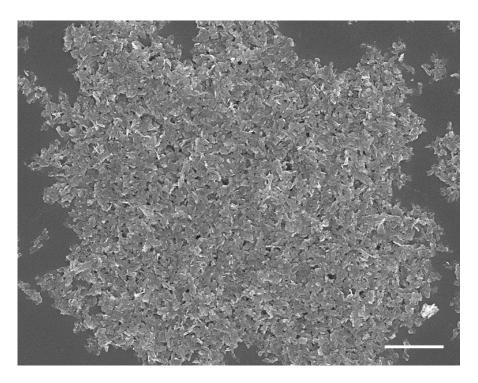


Fig. S1. SEM image of n-Cu₃(BTC)₂. Scale bar: 3 µm.

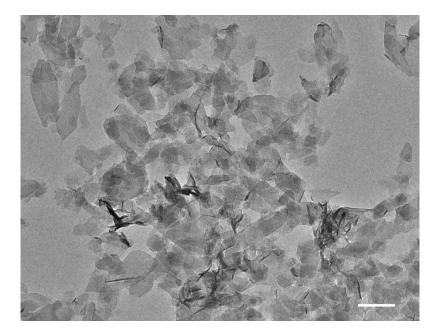


Fig. S2. TEM image of *n*-Cu₃(BTC)₂. Scale bar: 200 nm.

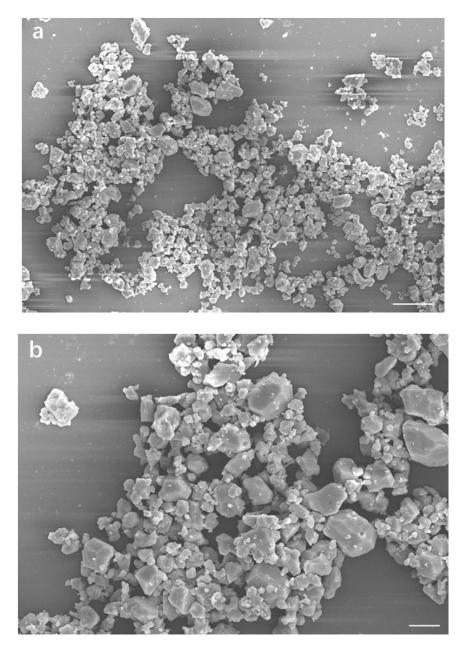
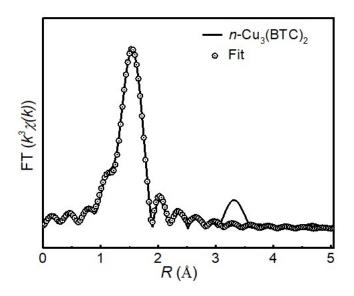



Fig. S3. SEM images of m-Cu₃(BTC)₂. Scale bars: 30 µm in a and 10 µm in b.

Fig. S4. EXAFS fitting curve of n-Cu₃(BTC)₂.

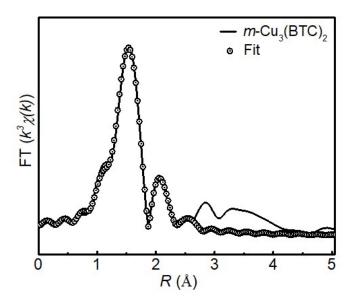


Fig. S5. EXAFS fitting curve of *m*-Cu₃(BTC)₂.

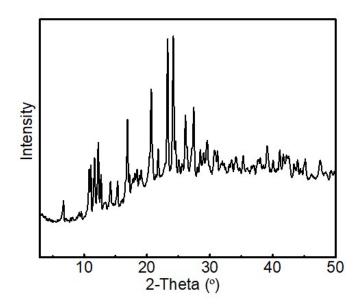


Fig. S6. XRD pattern of the $Cu_3(BTC)_2$ synthesized in absence of IL.

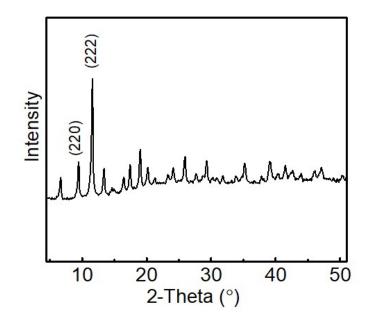


Fig. S7. XRD pattern of the $Cu_3(BTC)_2$ synthesized in absence of water.

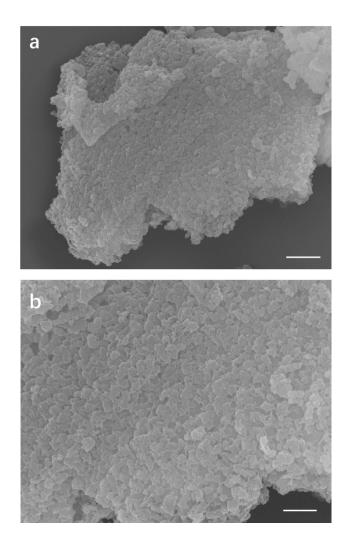


Fig. S8. SEM images of $Cu_3(BTC)_2$ synthesized in absence of water. Scale bars: 1 μm in a and 500 nm in b.

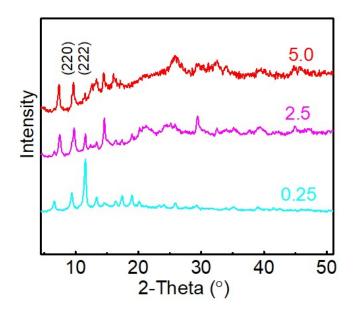


Fig. S9. XRD patterns of the $Cu_3(BTC)_2$ synthesized in IL/water solvent with water to IL mass ratio from 0.25 to 5.0.

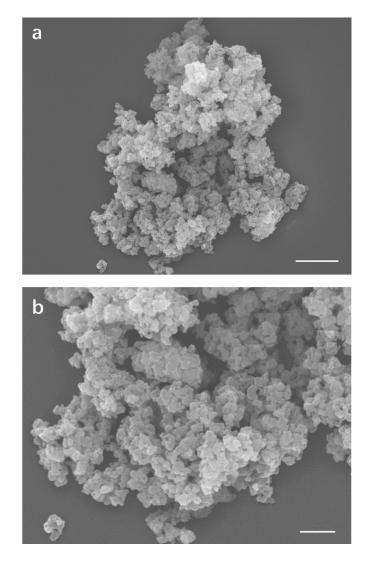
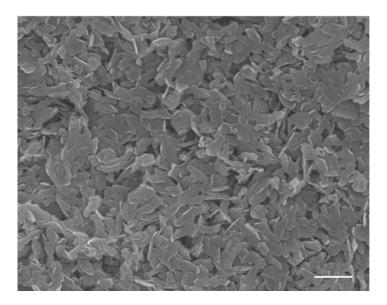



Fig. S10. SEM images of $Cu_3(BTC)_2$ synthesized in IL/water solvent with water to IL mass ratio of 0.25. Scale bars: 1 μ m in a and 500 nm in b.

Fig. S11. SEM image of $Cu_3(BTC)_2$ synthesized in IL/water solvent with water to IL mass ratio of 2.5. Scale bar: 500 nm.

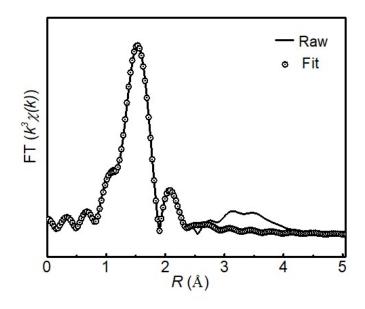


Fig. S12. EXAFS fitting curve of $Cu_3(BTC)_2$ synthesized in absence of water.

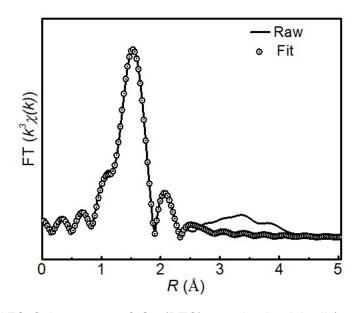


Fig. S13. EXAFS fitting curve of $Cu_3(BTC)_2$ synthesized in IL/water solvent with water to IL mass ratio of 0.25.

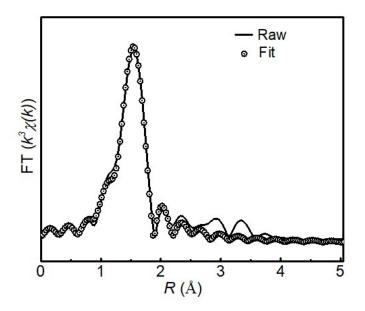


Fig. S14. EXAFS fitting curve of $Cu_3(BTC)_2$ synthesized in IL/water solvent with water to IL mass ratio of 2.5.

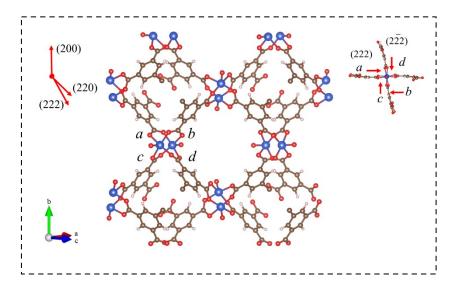


Fig. S15. Schematic diagram of crystal plane directions of $Cu_3(BTC)_2$.

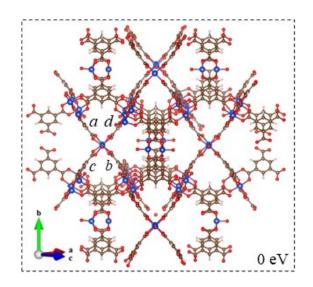


Fig. S16. Structure diagram of $Cu_3(BTC)_2$ when the Cu-O bond is unbroken.

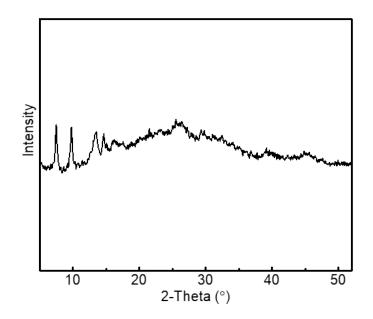


Fig. S17. XRD pattern of n-Cu₃(BTC)₂ after used for five cycles.

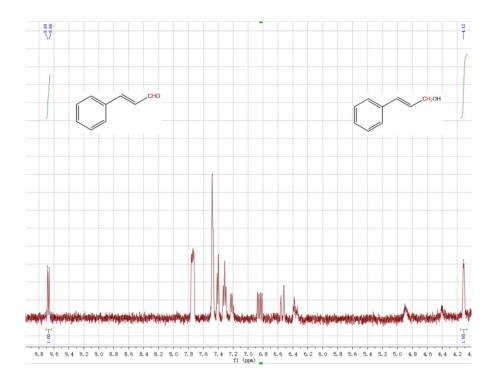


Fig. S18. ¹H NMR spectrum for the oxidation of cinnamyl alcohol catalyzed by m-Cu₃(BTC)₂ at 12 h.

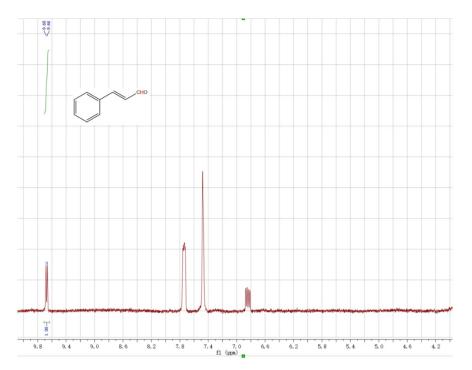
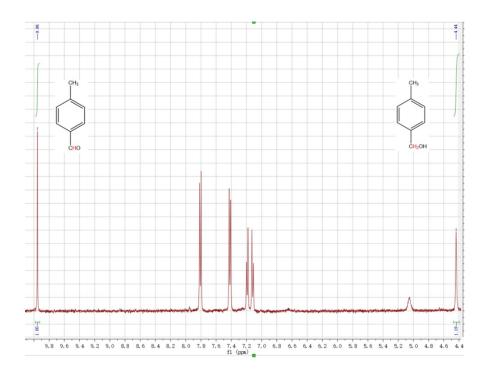
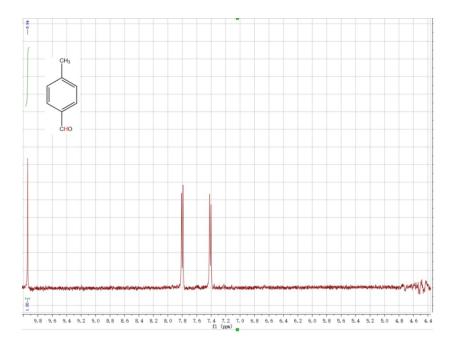




Fig. S19. ¹H NMR spectrum for the oxidation of cinnamyl alcohol catalyzed by n-Cu₃(BTC)₂ at 12 h.

Fig. S20. ¹H NMR spectrum for the oxidation of 4-methylbenzyl alcohol catalyzed by m-Cu₃(BTC)₂ at 13 h.

Fig. S21. ¹H NMR spectrum for the oxidation of 4-methylbenzyl alcohol catalyzed by n-Cu₃(BTC)₂ at 13 h.

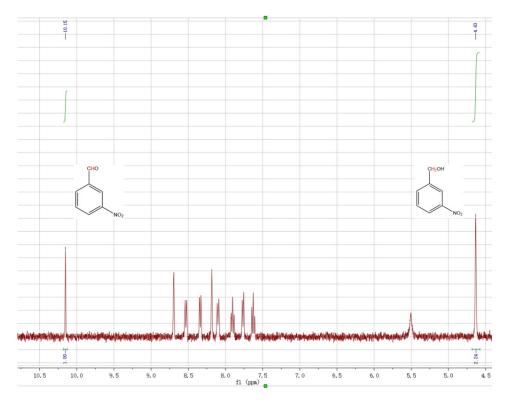


Fig. S22. ¹H NMR spectrum for the oxidation of 3-nitrobenzyl alcohol catalyzed by m-Cu₃(BTC)₂ at 16 h.

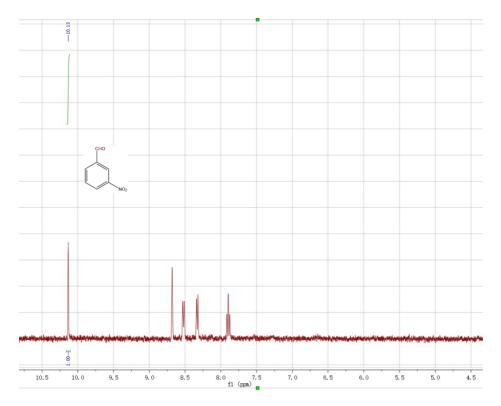


Fig. S23. ¹H NMR spectrum for the oxidation of 3-nitrobenzyl alcohol catalyzed by n-Cu₃(BTC)₂ at 16 h.

Sample	<i>n</i> -Cu ₃ (BTC) ₂			
O 1s	Position (eV)	FWHM (eV)	Area	
COO	532.0	1.937	35212.86	
Cu-O	531.6	1.369	34224.01	

Table S1. High-resolution XPS spectra fitting data of O 1s for n-Cu₃(BTC)₂ and m-Cu₃(BTC)₂.

The ratio of peak area of Cu-O bond to that of COO bond for n-Cu₃(BTC)₂ is 0.97.

Sample	<i>m</i> -Cu ₃ (BTC) ₂				
O 1s	Position (eV)	FWHM (eV)	Area		
COO	532.8	2.310	21963.34		
Cu-O	531.9	1.387	23446.35		

The ratio of peak area of Cu-O bond to that of COO bond for m-Cu₃(BTC)₂ is 1.07.

Table S2. EXAFS fitting parameters at the Cu K-edge for n-Cu₃(BTC)₂, m-Cu₃(BTC)₂ and Cu₃(BTC)₂ synthesized in IL/water solvent with water to IL mass ratio from 0 to 2.5.

Sample	Sample Shell N ^a	R (Å) ^{<i>b</i>}	σ² (Å-²·10-³) °	ΔE_0 (eV) ^d	R	
oumpio		,,,				factor
						(%)
n-Cu₃(BTC)₂	Cu-O	3.6	1.94	3.6	6.0	0.3
<i>m</i> -Cu₃(BTC)₂	Cu-O	5.0	1.95	5.0	2.8	0.5
0	Cu-O	4.5	1.95	5.6	3.9	0.1
0.25	Cu-O	4.4	1.95	5.4	3.7	0.3
2.5	Cu-O	4.1	1.93	3.8	6.5	0.4

Table S3. Energy barriers of water attacks Cu-O bond in *a*, *b*, *c* and *d* directions. The calculation process of energy barriers required for the fracture of (222) crystal plane, vertical plane of (222) crystal plane and (220) crystal plane.

	$E^{a}(eV)$	$E^{b}(\mathrm{eV})$	$E^{c}(eV)$	E^d (eV)
$E_{2H_2O-Cu_3(BTC)_2}$	-4551.12	-4551.44	-4550.19	-4551.06
$E_{Cu_3(BTC)_2}$	-4525.48	-4525.48	-4525.48	-4525.48
E_{H_2O}	-14.21	-14.21	-14.21	-14.21
$\varDelta E$	2.78	2.46	3.71	2.84

Calculation process:

 $\varDelta E_{\rm xyz} = E_{\rm 2H_2O-Cu_3(BTC)_2} - E_{\rm Cu_3(BTC)_2} - 2E_{\rm H_2O} ;$

$$\Delta E_{222} = (\Delta E^a + \Delta E^b)/2 = 2.62 \text{ eV};$$

 $\Delta E_{22\overline{2}} = (\Delta E^c + \Delta E^d)/2 = 3.28 \text{ eV} \text{ (vertical plane of 222) ;}$

$$\Delta E_{220} = \min\left(\frac{\Delta E^{a} + \Delta E^{d}}{2}, \frac{\Delta E^{b} + \Delta E^{c}}{2}\right) = \min(2.81, 3.09) \text{ eV} = 2.81 \text{ eV}.$$