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Section 1. Effects of introducing latent variables and distribution stabiliza-12

tion mechanisms13

MD-GAN succeeds in reducing the exposure bias by introducing latent variables and distri-14

bution stabilization mechanisms. In general, most real-world data can be considered as lying15

along a low-dimensional manifold in a high-dimensional space[1, 2, 3]. Based on this idea,16

the evolution of the extracted trajectory of the subsystem is also represented as the evolution of17

dense latent variables, embedded in a low-dimensional space. Supplementary Fig. 1 shows the18

effects of these latent variables. The left figure is a conceptual figure of time evolution of a raw19

trajectory in high-dimensional space wherein no latent variables are introduced, while the right20

figure shows a conceptual figure of time evolution in low-dimensional space wherein latent vari-21

ables are introduced. Each sphere represents M steps of trajectory information. In the figure on22

the left, the gray sphere is Yk∗M :(k+1)∗M−1, and the red and yellow spheres represent examples23

of points that might be taken as Y(k+1)∗M :(k+2)∗M−1 after the next time evolution. In the figure24

on the right, the gray sphere is zi, and the red sphere and yellow sphere represent examples of25

points that may be taken as zi+1 next. For visualization purposes, the figure on the left is drawn26

in three dimensions, but the actual dimension is 3M for single-particle input. The reason for27

the 3M dimension is that Yk∗M :(k+1)∗M−1 is the information in xyz coordinates for M steps.28

Similarly, for the figure on the right, the latent variable may be more than two-dimensional(429

dimensions for single-particle input). The blue region represents the support where variables zi30

and Yk∗M :(k+1)∗M−1 can exist respectively, and it is called the manifold. When the gray sphere31

has information of the current M steps, it can take various states via stochastic transition, during32

the next time evolution. In this evolution, although the red sphere is on the manifold, the yellow33

sphere is off it. Assuming that a yellow sphere is input to MD-GAN in the estimation phase,34

the input is an unknown input in the training phase, and this may result in exposure bias. In the35

time evolution of a high-dimensional and sparse space, as shown in the left figure, it is likely to36
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deviate from the manifold, while in a low-dimensional and dense potential space, as shown in37

the right figure, it is less likely to deviate from the manifold. Therefore, the introduction of la-38

tent variables is expected to make it harder to deviate from the manifold through time evolution39

and contribute to the reduction of exposure bias.40

The initial latent variable z0 is sampled from the nz-dimensional uniform distribution U(Snz).41

Gz generates further zi using the previous zi−1 and a random value. We then apply Gz to z0 and42

repeatedly generate z1, z2, and so forth. After z0 is time evolved by Gz, there is no guarantee43

that the distribution of z1 will be as uniform as that of z0. If they are different, the trajectories44

generated by GY from z0 and z1 will not satisfy the third assumption of MD-GAN. If the trajec-45

tories generated from z0 and z1 are used for training, then z1 is input to Gz in estimation phase,46

and this implies an unknown input and leads to the occurrence of exposure bias. Therefore, Gz47

is applied repeatedly until the distribution of latent variables becomes stationary. After seven48

or more time evolutions, the latent variables obtain a stationary distribution and trajectories are49

generated from these latent variables. Thus, the mechanism that evolves in time until a station-50

ary distribution is obtained is the distribution stabilization mechanism, which contributes to the51

reduction of exposure bias.52

Section 2. Detailed architecture of MD-GAN53

Supplementary Fig. 2 shows the overall architecture of MD-GAN, and the architectures of GY ,54

Gz, and DG are shown in Supplementary Fig. 2A, B, and C, respectively. Supplementary Fig.55

2 describes the parameters used for the single-particle input. For the three-particle input, the56

number of channels for convolution was increased from three to nine, and the shape of yk was57

set to 64× 9. The optimizer was Adam[4], and the batch size was 64. The architecture of MD-58

GAN in a previous study[5] was based on U-Net. However, for ease of use, we changed the59

architecture to consist mainly of affine layers. There was no significant change in the execution60
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results owing to architectural changes. In addition, the previous study used two discriminators:61

DG and a discriminator that calculates the Wasserstein distance of two latent variables before62

and after the time evolution. In this study, we did not use the discriminator between the two63

latent variables.64

Section 3. How to calculate err65

In this paper, err, the evaluation index, is defined as66

err :=

∫ s2

s1

f(t)ds/

∫ s2

s1

ds (1)

In the MSD prediction, s = log10 t, s1 corresponds to the time when n = 1/2 diffusion ends,67

transition to n = 1 diffusion begins, and s2 corresponds to the time when the transition ends and68

the normal diffusion to n = 1 begins. When calculating err, appropriate discretization should69

be performed depending on the number of step skips. Transforming Eq. 1 into an expression70

with respect to t:71 ∫ s2

s1

f(t)ds/

∫ s2

s1

ds =

∫ t2

t1

f(t)
1

t
dt/

∫ t2

t1

1

t
dt (2)

Let tk = k∆t be the width of the time increment to be discretized, where ∆t is the tick width72

after applying step skip, and is thus the product of the number of step skips and the output tick73

width of the MD data. k is the number of steps after applying step skip. Discretizing Eq. 2, we74

get75 ∑
k∈transition area

f(k∆t)
1

k∆t
∆t/

∑
k∈transition area

1

k∆t
∆t (3)

=
∑

k∈transition area

f(k∆t)
1

k
/

∑
k∈transition area

1

k
(4)

From the above equation, the value of err in the MSD prediction can be obtained. In the76

prediction of the end-to-end vectors, considering s = t, we get77 ∑
k∈area inwhichC(t) is greater than 0.1

f(k∆t)∆t/(t2 − t1) (5)
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Fig. S 1. Schematic view of time evolution in a low-dimensional space. The gray, red, and
yellow spheres contain the trajectory information for M steps of the extracted subsystem. The
blue region is the manifold where the information of M steps can be found.
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Fig. S 2. Detailed architecture of MD-GAN. ri, r′i are random numbers sampled from the
uniform distribution, ui are random numbers sampled from the normal distribution, zi is a latent
variable, nr is the dimension of the random number, nz is the dimension of the latent variable,
and yk is the trajectory for 64 steps. The numbers next to the arrows represent the shape of
the output (batch size is omitted). (A) Architecture of GY In one-dimensional convolution, the
kernel size is 1, the stride is 1, and the number of input and output channels are both 3. (B)
Architecture of Gz (C) Architecture of DG In one-dimensional convolution, the kernel size is
128, the stride is 128, the number of input channels is 3, and the number of output channels is
2048.
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