Supporting Information

Effect of Solvent on the Emulsion and Morphology of Polyfluorene Films: All-atom molecular dynamics approach

Sabila K. Pinky^a, Albert L. Kwansa^a, Buang Zhang^b, Adrienne D. Stiff-Roberts^{*b} and Yaroslava G. Yingling^{*a}

Figure S1 Histogram of backbone dihedral angle at final state for all the chains in the systems with different solvents.

Materials

Figure S2 Total Hansen Solubility Parameter (HSP) for a pure PFO polymer system simulated using the GAFF2 force field (10 x 10-mer chains, 300 K, 1 atm) compared to an experimental reference value for PFO based on an average of total HSPs for chloroform and tetrahydrofuran from Grell et. al.¹

Table S1 Details of the simulation systems (PFO = polyfluorene polymer, PS = primary solvent, SS = secondary solvent, and WAT = water)

Solvent	No. of total	Mass fraction					No. of	atoms	
name	atoms	PFO	PS	SS	WAT	PFO	PS	SS	WAT
ТСВ	12391	0.5	0.118	0.029	0.353	6920	600	299	4572
TMB	13387	0.5	0.118	0.029	0.353	6920	1596	299	4572
DCB	12535	0.5	0.118	0.029	0.353	6920	744	299	4572
CPN	13667	0.5	0.118	0.029	0.353	6920	1876	299	4572
TOL	13276	0.5	0.118	0.029	0.353	6920	1485	299	4572

Figure S3 A) Density comparison and B) total Hansen Solubility Parameter (HSP) comparison for pure solvent systems using the GAFF2 force field. Experimental data were collected from different online sources^{2,3}

Primary solvent	Chemical formula	Density (g/cc)	DM [*] (debye)	Total HSP ^{**} (MPa ^{1/2})
ТСВ	C ₆ H ₃ Cl ₃	1.433±0.0067	1.756±0.0082	17.405±0.106
ТМВ	C ₆ H ₃ (CH ₃) ₃	0.863±0.0006	0.34±0.0043	16.05±0.107
DCB	C ₆ H ₄ Cl ₂	1.28±0.0069	3.38±0.0027	17.28±0.111
TOL	C ₆ H₅CH₃	0.856±0.0058	0.32±0.0014	15.99±0.131
CPN	C₅H ₈ O	0.928±0.006	3.392±0.0029	19.50±0.161

Table S2 Solvent properties calculated from MD simulations.

*DM is denoted for molecular dipole moment

**HSP is denoted for Hansen Solubility Parameter

Components	Formula	C	Н	Cl	0
тср		0.0557	0.1241	-0.0882	
		0.0343	0.1448	-0.0848	
	CEUDOD	-0.0144	0.1476	-0.0916	
TCD	CONSCIS	0.0318			
		-0.0694			
		-0.1263			
		-0.2009	0.0632		
		-0.2160	0.0704		
		-0.1415	0.0511		
T 1 4 D	60142	0.1209	0.1580		
TIVIB	C9H12	0.0655	0.1528		
		-0.2648	0.1745		
		0.0916			
		-0.2003			
		0.0639	0 1303	-0 1054	
DCB	Сенесіз	-0.0903	0.1520	0.1031	
DCD	00110012	-0.1505	0.1320		
		0.5667	0.0400		-0.5623
CPN	С5Н8О	-0.0907	0.0164		
		-0.0243			
	C7H8	-0.2576	0.0790		
		0.1247	0.1251		
TOL		-0.1467	0.1424		
		-0.1859	0.1207		
		-0.0946			
		0.2688	0.3786		-0.5305
DUE	CELIEO	-0.1719	0.1396		
PHE	Сопос	-0.1818	0.1510		
		-0.1121	0.1214		
		-0.0303	0.1428		
		-0.0799	0.1991		
	(C29H42)10	-0.4082	0.2049		
		0.2568	0.1425		
PFO		-0.3967	0.1388		
	(0251112/20	0.0679	0.1455		
		-0.0163	0.1319		
		-0.1759	0.0184		
		-0.1325	0.0108		
		-0.1936	0.0032		

Table S3 Partial charges for all the components used for emulsion systems

	-0.1436	-0.0016	
	0.0923	-0.0041	
	0.0691	0.0007	
	-0.0685	-0.0038	
	-0.0030	0.0138	
	-0.0044	0.1378	
	0.0085	0.1990	
	-0.0034	0.0110	
	0.0081	0.0111	
	0.0362	0.0033	
	-0.0730	-0.0028	
	-0.0365	-0.0041	
	-0.0775	0.0015	
	-0.4059	-0.0027	
	0.2581	0.0146	
	-0.4077		
	0.0778		
	0.1020		
	-0.0503		
	0.0054		
	-0.0078		
	0.0079		
	-0.0019		
	0.0071		
	0.0335		
	-0.0748		

Table S4: Statistics of the RESP partial charge fitting for the end and middle polymer fragments using intramolecular charge constraints. These statistics are based on quantum mechanics (QM) electrostatic potential (ESP) data and ESP data calculated from the fitted atomic partial charges, after the second stage of the RESP fitting procedure. For both fragments, there were 71 atoms and 2,553 ESP grid points

Statistic	End	Middle
	fragment	fragment
"The initial sum of squares (ssvpot)" $ssvpot = \sum_{j} (V_{j}^{QM})^{2}$ $V_{j}^{QM} = \text{ESP at grid point } j \text{ from QM}$	0.234	0.234
"The residual sum of squares (chipot)" $chipot = \chi^2 = \sum_{j} (V_{j}^{QM} - V_{j}^{calc})^2$ $V_{j}^{calc} = \text{ESP at grid point } j \text{ from atomic charges, } q_j$	0.017	0.019
"The std err of estimate (sqrt(chipot/N))" $RMS \ error = \sqrt{\frac{chipot}{N_{grid \ points}}}$ $N_{grid \ points} = \text{Number of grid points} (2,553)$	0.00185	0.00195
"ESP relative RMS (SQRT(chipot/ssvpot))" $RRMS \ error = \sqrt{\frac{chipot}{ssvpot}}$	0.27257	0.28777
"The [squared] Pearson correlation coefficient (r ²)" $R^{2} = \left(\frac{\sum_{j} \left(V_{j}^{QM} V_{j}^{calc}\right) - \sum_{j} \left(V_{j}^{QM}\right) \sum_{j} \left(V_{j}^{calc}\right)}{\left(\sqrt{\sum_{j} \left(\left(V_{j}^{QM}\right)^{2}\right) - \left(\sum_{j} \left(V_{j}^{QM}\right)\right)^{2}} \sqrt{\sum_{j} \left(\left(V_{j}^{calc}\right)^{2}\right) - \left(\sum_{j} \left(V_{j}^{calc}\right)\right)^{2}}\right)^{2}}\right)^{2}$	0.92316	0.91438

Table S5 Experimental and simulation data for emulsions with different primary solvents.

	Experimental data[25]		Simulated data			
Primary solvent	Solubility- Film in-water roughness, (g/100g) R (nm)		PS-WAT interaction energy (kcal/mol)	PS-PFO interaction energy (kcal/mol)	Interaction energy ratio (PS- PFO:PS-WAT)	
ТСВ	0.00488	15.2±3.7	-65.77±8.23	-495.76±40.66	7.537±0.17	
ТМВ	0.0057	177.7±25.3	-113.09±14.40	-508.91±49.54	4.500±0.12	
DCB	0.0156	37.6±8.5	-161.08±11.67	-836.09±51.23	5.190±0.05	
TOL	0.053	250.4±32.3	-242.17±17.64	-735.56±30.26	3.037±0.02	
CPN	0.9175	422±154.6	-1195.753±39.24	-610.33±37.64	0.510±0.002	

References:

1 M. Grell, D. D. C. Bradley, X. Long, T. Chamberlain, M. Inbasekaran, E. P. Woo and M. Soliman, *Acta Polym.*, 1998, **49**, 439–444.

2 C. M. Hansen, *Hansen solubility parameters: a user's handbook*, CRC press, 2007.

3 C. L. Yaws, Yaws' Critical Property Data for Chemical Engineers and Chemists, Knovel, 2012.