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Light Scattering from Mixtures of Interacting, Nonionic Micelles
with Hydrophobic Solutes

Nathan P. Alexander,*? Ronald J. Phillips,® and Stephanie R. Dungan®¢

S1. Thermodynamic fluctuation theory
1.1 Derivation of §S and symmetry relations for [G]

In this section the total entropy fluctuation §Sr, given by
eqgn (7)—(9), is derived for an n-component mixture at constant
temperature and volume using either the Gibbs thermodynamic
framework at constant pressure, corresponding to typical
experimental conditions, or, equivalently, the McMillan-Mayer
framework at constant solvent chemical potential, which
defines the chemical potential fluctuations of a mixture with a
force-free solvent. We begin with eqn (7)

n—-1

—2T6Sy = Z 516N, = Z 816N, + 611, 6N, (5.1)

According to the Gibbs framework, the total fluctuation

differential of the extensive Gibbs free energy is given by

n-1
89 = —SST +Vép + Z 16N, + SN, (5.2)
i=1
and the chemical potentials are defined as
(6g) = 1,2 (5.3)
Ui = N fori=12,..,n .

VDT )Nizi

and N; is the number of moles of component i. Furthermore,
using the constant volume constraint, we have

n n-1
6V = Z Vi6Ni = Z Vi6Ni + V,L6Nn =0 )
i=1 i=1

where Vl- is the molar volume of species i, which is assumed to
be constant. Solving for the fluctuation N, in eqgn (S.4)
provides

(5.4)

n-1 —
Vi
6N, = — —=6N; (5.5)
Vo
i=1
Eqn (S.1) and (S.5), combine to yield
n n—-1 V
PRITEDY (cm- -7 cmn) 5N, (5.6)
i=1 i=1 n
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Now, using the Gibbs-Duhem relation at constant temperature,
pressure, and volume, we have

n n—1
Z [i6u; = ZNﬁuj+N Spn, =0

Solving for the solvent fluctuation 6y, in eqn (S.7) provides

.7

n-1 n-1
V N; C;
Sptp=— » —-L6uj=— » L6 5.8
Pn VN, U 2T, U (5.8)
j=1 j=1

Eqgn (S.6) and (S.8) combine with the solvent volume fraction

Cil,=1—¢ . (5.9)
to provide
n n-1 [7 n—
i=1 i=1 =1

At constant temperature and pressure, the species chemical

potentials u; = w;(T,p,Cy,...,Cnh_1) are expanded via the
chain rule
n—-1
ou;
6ui = - E 6Ck ’ (511)
k=1 K7 DTNk
and eqgn (S.1), (S.10) and (S.11) combine to give
n-1n-1
—2T6Sy =V Z Z Gik0C;6Cy (5.12)
i=1 k=1
where
— n—-1
oy Vl [
G =3¢, t1-92.9\ac
K pT,Cizk j=1 k D.T.Cixk
fori,k=12,..,.n—1. (5.13)

Now, using the McMillan-Mayer framework, we will first
show that [G] is symmetric, followed by a derivation for the
total entropy fluctuation 8§S;. The extensive McMillan-Mayer
free energy for an n-component mixture is given by a Legendre
transform of the Helmholtz free energy A(V, T, Ny, ..., N;,).12

F(V,T,Ny,...,Np_1,iln) = A(V,T,Ny,...,Ny) — Npfly,  (S.14)

and the total fluctuation differential of F is given by



n-1
SF = —S6T — poV + Z 16N, — NySity,

i=1

(8.15)

where the chemical potential of component i at constant
volume is defined according to

(aﬁ) fori=1,22 1
Ui = ori=12,..,n—1.
N TtV Nieai

At constant volume,

(5.16)

temperature, and solvent chemical

potential, mixed partial derivatives of the McMillan-Mayer free
energy are given by

( 92F > _( 0%F >
dNON; Tt V,Creni ON;ONy T V,Cresi

fori,k=12,..,n—1. (5.17)

Multiplying eqn (S.17) through and by constant volume V yields

e oy
aCyaN; T, tn,V,Crei 0Ci0Ny TV, Cresi

fori,k=12,..,n—1, (5.18)
and egn (S.16) and (S.18) combine to provide
ou _ (o
(ack>T_#mV_Ck=l a (ac)wny,ck#i
fori,k=12,..,n—1. (5.19)

Furthermore, at constant V, T, and u,, eqn (S.1) reduces to

n-1

i=1

(5.20)

and the species chemical potentials y; = w; (T, ty, Cir - -+ Cn1)

are expanded via the chain rule

n-1
ou:
Opi = Z (%) 8C - (s.21)
k=1 k T, unV Crzi
Eqn (5.20) and (S.21) combine to give
n-1n-1 P
—2T8Sr =V (agl) 8C, 8C; . (5.22)
i=1 k=1 k T.un,V,Crzi

Finally, combination of egn (S.12), (S.13), and (S.22) yield

— n—-1
(0 (0 Vi ou;
bu =3¢, =\ac, -9 £ 93¢,
k k =1 K/ DT Crzi

fori,k=12,..,n—1.

T, unV,Crexi p.T.Cizk

(5.23)

1.2 Diagonalization of [G]

In this section, the modal matrix [P] for the diffusivity matrix
[D] is shown to diagonalize the chemical potential derivative
matrix [G] via

[G] = [PI"[GI[P (5.24)

To begin, note that for a ternary mixture, the matrix [ﬁ] is
diagonal if

Gas = Ggq = 0. (5.25)
Furthermore, [G] is symmetric,3 so that
Gas = Gsq - (5.26)
Combining eqn (5.24)—(S.26) provides
GaaPaaPas + Gas(PaaPss + PasPsa) + GssPsalss =0 . (S.27)

Eqn (S.27) and (34) combine to yield

GaaDas” + Gas(Ds + D = 2Daq) Das
+ Gss{DyD_ — Dgq(Dy + D_) + Dgy®} =0 .
(5.28)
The following relations for the trace
D, +D_=Dgq+ Dgs . (5.29)
and the determinant
D,D_ = DgsDyyq — DysDsq. (5.30)
of [D] are then combined with eqn (S.28) to give
Dqqlas + DsaGss = GaaDas + GasDss » (5.31)

which is the Onsager Reciprocal relation.3 Hence, eqn (S.25) is
satisfied and [ﬁ] is diagonal.

1.3 Derivations of B and Rg,

In this section, we begin with eqn (15), generalized for an n-

component mixture at constant temperature and pressure

n—-1
%4 A oa
P(6%) = 02, expl— Z G562t . (5.32)
2kgT \ £
i=1

Using the product rule for exponents, we can write

P(6x) = P,(8C,)P,(8C;) -+ Py—y(6Cpy),
(5.33)

where,

P(56,) = 0 e 75 TerC) (5.34)

Eqgn (S.33) and (S.34) indicate that the decoupled concentration
fluctuations 6C; are statistically uncorrelated with a fluctuation
probability Pi(éa-) that obeys a Gaussian distribution. The
constants (2; are determined via integration of the fluctuation

probability over all possible fluctuations,

0 1

=(6C) = fd(ac )e( 2kp SegrGisCi’) - <27;"6€T>§ , (5.35)




Using eqgn (S.34), the mean-square fluctuation in concentration
is given by
A2 AN oA 2 A

—0o
3}

Z'Qi_l fd(6él)6élz ( ZkBT

—oo

1
_ g 2mkT\2 kT
' VG, ) VG’

and egn (S.35) and (S.36) combine to yield

o Gi8C”)

(5.36)

a2 _kBT

(8¢ = Ve (5.37)

In order to determine the field autocorrelation function,
defined by (19),

thermodynamics and expand the total fluctuation of the local

eqn we invoke non-equilibrium

dielectric constant € = e(T,p, fl,fi,...fn_l), expressed here
as function of n+ 1 intensive variables.* The chain rule at
constant T and p provides

n-1

3 )
Se(q,t) = Z (%) 5¢(q.t) ,
T)p

i=1 t

(5.38)

where, §C;(q, t) is the Fourier transform of the decoupled local

concentration fluctuation 8C;(r, t), given by

. 1 . A
ACHEL f dr3 756, (r,t) . (5.39)
|4

The time correlation function for fluctuations in £(q, t) is given
by

(6e7(q,0)6e(q, )

n-1n-1

de A A
z Z( ) <_> (6C;(q,0)6C;(q, 1)) -
T.p

i=1 j=

(5.40)

8Ci(q,t) are
consistent with eqn (S.33) and the Siegert

The concentration fluctuations statistically
uncorrelated,

relation, so that

(8C (q,0)8C;(q, 1)) = (5C; (q,0)8(;(q, )85 (5.41)

where §;; is the Kronecker delta. Eqn (S.40), (S.41), and (25)

combine to yield

(6e7(q,0)d¢(q, 1))

n—1 2
oe A A ~
= Z <ﬁ> (6C;(q,0)8C;(q,0))exp(—q*D;t) . (5.42)
i=1 Y Tp
In order to relate the static correlation function

(6C7(q,0)5C;(q,0)) in eqn (5.42) with the mean-square
fluctuation (6@2), given by eqn (S.37), we note that in the limit

qR;- = 0, q is small compared with the position vector r that

spans the region enclosed by the scattering volume V, so that

q - = 0inthe limit gR; = 0. Hence, we can write
A i 1 3,iqTsA 1 384
6Ci(q,t) =qlle1i£r_1)ov ’ dr3 e"7§C;(r, t) =7 ’ dr3 6Ci(r,t) .

(5.43)
Now, setting t = 0 in eqn (S.43), the static autocorrelation function
of §C;(g,0) in the limit gR;+ — 0 is related to (6@2) according
to

2

lim (6¢; (q,05C,(q,00) = (| [ ar* 5C,r,0)| ) = (66
lim (66 (@, 005C,@,0) = (| ar* st ) = 667

(5.44)

which describes mean-square fluctuations in concentration that
occur via mass exchange between the liquid enclosed within the
scattering volume V' and the surrounding bath. Eqn (S.37), (5.42),
and (S.44) combine to provide

n—-1

e \* ksT
(52" (q,0032(q,0) = ) (—)
i=1

S.45
Ci),, VG (5.45)

exp(—q?Dit) .

For a non-magnetic, non-absorbing material, the solution refractive
index is related to the dielectric constant via

£=n?, (5.46)

so that egn (S.45) becomes

(5¢*(q,0)6¢(q, t)) = 4n? Z R, exp( ~?Dit) . (5.47)
where the refractive index increments are given by
Ri=(n/0C), . (5.48)

Eqn (19), (22), and (S.47) combine to yield the absolute value of the
normalized field correlation function for a n-component mixture at
constant temperature and pressure

_ nz_:l exp( q°D; t)
L }? G:
i=1 n-1 2 TL
LZFI (Ri> GjJ

Note, by taking the absolute value, the term et has been

eliminated from eqn (22). For a ternary mixture (n = 3), eqn (5.49)
reduces to

(6¢7(q,0)62(q, 1))

® =
9@ 01 = 5t 00)

. (5.49)

1
(1) — 2 _ 2D
l9®(q,0)] (1+B) exp(—q?Dyt) + (1+B) exp(—q?D;t),
(5.50)
where the mode amplitude ratio equals

Ry G
B—( ><2> (5.51)

Ry \G



In order determine the Rayleigh ratio Rgg for an n-component
mixture at constant temperature and pressure, we combine eqn
(37) and (5.47) and set t = 0, €2 = n*, and kf = 2mn/2q to
provide

I(QR? 4Am’n®~CO . 2 kgT
Rgg = = Z R — S.52
90 IOV /104 - i VGL ( )
For a ternary mixture (n = 3), we have
4n?n? _ 5 (kgT
Rop = —R," [—2=) (1 + B) (5.53)
Ao G

S2. Refractive index derivatives, chemical
potentials, thermodynamic driving forces, and
diffusion coefficients for multicomponent
micellar solutions

2.1 Refractive index derivatives

The solution refractive index for a ternary, single phase
mixture can be defined as a function of four independent,
intensive variables n =n(T,p,C,,Cs) =n(T,p,Cyq/Cs,P).*
Thus, at constant temperature T and pressure p, which are the
typical conditions under which measurements are performed,
the total differential of the solution refractive index is given by

d (671) dc, +(6n) dc,
n=|\z+ EYa
9C, p.T,Cs ¢ 9Cs p.T.Cq ’
), @)+ G)
0(Ca/C))pr gy \Cs 0 prearc,
(5.54)

Total differentials for the solute to surfactant molar ratio and
the volume fraction are given by

d (C“) L, —Lagc (5.55)
Cs _Cs a CSZ s .
and
dp = 7,dC, + VydC,s . (5.56)

Combining eqn (S.54)—(S.56) with R; = (dn/dC;) 1, yields,

Ra = Vo (g_;)pma e * Cis{a(c?;cs)}m . (5.57)
and
o =i (Z_Z)>p,r,ca/cs - ](/;: Eadif)s {a(Cir/le)} (5-58)

pT.¢

2.2 Local equilibrium relations

Consider an n-component mixture comprised of free water,
free molecular solute, hydrated surfactant monomer, and a
distribution of N different micelle types, comprised of various
numbers of solute and hydrated surfactant molecules. During a

typical light scattering measurement, fluctuations in the

concentrations of the mixture components occur and then relax
by diffusion. As diffusion occurs, it is assumed the local
equilibrium is achieved on a time scale much faster than that of
diffusion. Hence, one may define the total free energy minimum
for a mixture within a fixed, local control volume (sometimes
described as material point) at constant temperature T and
pressure p. The re-equilibration process via self-assembly
occurs very quickly, therefore, the system may be considered
isolated (no mass or energy transfer into or out of the material
point) on the time scale of equilibration. Hence, the total molar
Gibbs free energy differential at constant volume, temperature,
and pressure, is given by

N
dg = ,uadca,free + 1sdCron + 1 dCy + Z uedC, =0, (5.59)
k=1

where Cg free; Cmon, Cn, and Cy are molar concentrations for
free solute, hydrated surfactant, solvent, and micelles of type k,
respectively.

For an incompressible fluid at constant volume, we have

N
Vadca,free + Vhsdcmon + 17nan + Z deCk =0. (S 60)
k=1

Here, V,, is the partial molar volume of the solvent. Solving eqn
(S.60) for dC,, yields,

k

dC,=0. (S.61)

§:|| <

— — N
v, 7

dCy = —=dCq free — = ACrmon — Z
v, V, -

n

The total concentrations of solute (a) and surfactant (s) are
conserved, so that

N
dCa = dCa,free + ndek =0 (S 62)
k=1
and
N
dCs = dCpyon + Y mydCp =0 . (5.63)
k=1
Combining eqn (S.59) and (S.61)—(S.63) yields
Hie — Nyt — Myclts = Vie = eV — my Vg (5.64)

Since the molar volume of a micelle type k is given by V,, =
n V, + my Vi, eqn (E.6) yields

Hx = Nylq + Myl

fork=1.2,..,N . (5.65)

In egn (S.65) the chemical potentials are not uniquely defined,
and may be expressed, for instance, according to

_(Qg) _(OF _<6A>
M =\5a¢, =\ac, = \ac, ’

D T.Cizk T,V,Cizk

) (5.66)
T.unV,Cizk

where F and A are the extensive McMillan-Mayer and
Helmholtz free energies, respectively.



2.3 Osmotic pressure derivatives

Mixtures of nonionic surfactants and hydrophobic solutes
can be modelled as either ternary, single phase mixtures
comprised of solute, surfactant, and solvent, or as n-component
mixtures of free molecular solute, monomer surfactant, and a
distribution of aggregates, containing various numbers of solute
and surfactant molecules. Hence, the osmotic pressure of these
mixtures can be defined as a function of either four or n + 1
independent, intensive variables

n =
I(T, uy, Cq, Cs) = (T, Uy, Cy,Cy,...,Cr_q). Using the chain

according to

rule, the gradient in the osmotic pressure can be expanded at
constant T, u,

(VH)T,MH=<6—H> ve, +<an> ve, .
JUn

9Ca) , Cs)

(5.67)

Eqn (S.67) and the Gibbs-Duhem equation at constant T, u,
combine to yield

<an) Ve, +<a) Ve ZC(V)
3o, ac B Hi

Similarly, the micelle species chemical potentials can also be

(5.68)

expressed as a function of either four or n 4+ 1 independent,
according to  p; = p;(T, iy, Cq,Cs) =
Cyn-1) and the gradients in u; can also be

intensive variables,

H.](T, Hn, Clr Cz, ey
expanded using the chain rule at constant T, i,

V), , <aca>mn

Combination of eqn (S.67)—(S.69) and expansion using the chain

(5.69)

rule provides

o = /a ac
Uk j
( ) - Ce ( ) (—) (5.70)
0Calr,, =l “\3G),, \oC,
and
n-1n-1
a ac;
( ) Ce < “"") (ﬁ) (5.71)
Cs/ 1y k=1j=1 Tin s

In this work, the concentrations of free molecular solute and
surfactant monomer are vanishingly small, so that egn (S.70)
and (S.71) reduce to summations over N micellar species

(an> iic <6uk> <acj> (5.72)
JR— = k| 5~ "
0Cq Tun  k=1j=1 BCj T\un Ca
and
N N
omy ik aG
(acs)mn =2 <6C > <0C ) .

2.4 Chemical potential derivatives and driving forces for diffusion

The driving force for diffusion of component i in an n-
component, single phase, incompressible mixture may be
written as

Xi ==V , (5.74)

where the chemical potential u; of species i is a function of n +
1 other independent, intensive variables u =
.ui(T' p, Cl! CZ' LR Cn—l) = Hi (T' Hn» Cl! CZ' LR Cn—l)'4 and Up is
the chemical potential of the solvent. Using the chain rule, one can

expand eqn (S.74) according to

X; = (a“‘) VT — (%) p— (Vu;) (5.75)
! T /e o/ ¢ tpr '
or, equivalently,
ou; ou;
X, =— ( ) —(—) Vi, — (Vy; . S5.76
i 9T aﬂn re Un ( Aul)T,H.n ( )
In egn (S.75) and (S.76), the subscript € = [Cy,C5,...,Ch_1]

indicates that the vector of component concentrations is held
fixed. For an incompressible mixture, one can show

u; _
(ﬁ) -7, (5.77)
/1
and by using a chain rule expansion we have
d ou;/0 v;
(i) _ Ow/op)re _ Vi (5.78)
a”n T,C (a.un/ap)T,C Vn

Eqn (S.75)—(S.78) combine to produce

au; _
Xi=—(58) VT -V - (Wu)yyr
T /¢
z_(%> VT—EV —(Tu)
6T s ]—/n Hn Ui Tun *
(5.79)
At constant T, u,, eqn (S.79) provides
(V/"i)p,T = (V”i)T,un - Vi(vp)T,un ’ (5 80)

and according to the Gibbs-Duhem equation at constant T, u,,
the total pressure gradient in the mixture is given by

n-1

D rp, = Oz, = Y 670,

=

(5.81)

Per McMillan-Mayer solution theory,’ 2 eqn (S.81) describes a
total pressure gradient within a multicomponent mixture that is
separated from pure solvent by a semi-permeable membrane,
which is permeable to only the solvent. The total pressure p of
the mixture is equal to the osmotic pressure II, plus the
pressure of the pure solvent p,,,, which is held constant with y,,.
Hence (Vp)r,, = [V(py +ID]r,, = (VIDr,, . Eqn (5.80)
and (S.81) combine to give



n—-1
~Wdpr = ~Odrg, + T Y GO, . (5.82)
j=1
Now, using eqgn (S.78), hold T, p constant, so that
Vi
_(V#i)T,p_n = _(V#i)p,T + V_(V#n)p,T . (5.83)
n
Per the Gibbs-Duhem eqgn at constant T, p
n-1
G
Pradpr == 2 (wy),, - (5.84)
= Cr ,

Combine eqgn (S.83) and (S.84) with the solvent volume fraction
Cn,V,, = 1 — ¢ to find

<

n-1
—Vudryu, = —Vudpr — ﬁz C}(V“f)p,r . (5.85)
=1

According to the chain rule, we have

n-1
ou;
Wudpr = Y (56) VG (5.86)
k=1 Ko
and
n-1
ou;
Pudry, = Z (a_cl) Ve, . (5.87)
k=1 k2T pn
Combine eqgn (S.82), (S.86), and (S.87), so that
n-1
au; oy _ ou;
Ge) =68 -nYya(se) - e
k% pr kT j=1 k) Ty,

Now, combine eqn (S.85)—(S.87) to provide the elements of [G]

— n-1
um(), - 56 ()
ik — \3,~ —\3,~ T _ & j\ 3,

0C) 7, \0C,, 1-¢ & 7\oC),,

fori,k=12,..,n—1. (5.89)
Eqgn (5.88) and (5.89) combine to yield
oy ou;
(3e,) =a-(5)
k% pr kT u,
fori,k=12,..,n—1. (5.90)

Following de Groot and Mazur,® the rate of entropy
produced irreversibly by diffusion in an isothermal, non-
reacting, multicomponent mixture with no externally applied
forces is defined by

n
To = —Z J& - (Vudpr =0 . (5.91)
i=1
Here, the molar species flux of component i is given by
Ji =G —vY), (5.92)

and is defined relative to an arbitrary reference velocity

n
a —
v —Zaivi ,

i=1

(5.93)

where v; and a; are the respective velocity and normalized
weighting factor for species i.

The forces —(V;)p,r and fluxes J7 in eqgn (5.91) are not
independent, since the flux and chemical potential gradient of
the solvent, denoted by the subscript n, can be eliminated using
the Gibbs-Duhem equation

n-1
Ci
Phadpr == ) £ Widyr (5.94)
n
k=1
and the following relation between the fluxes
n-1 C
a.
Ji==) —=J¢ . (5.95)
Ci an
k=1

Egn (S.91), (5.94), and (S.95) combine to provide the rate of
entropy production in terms of independent driving forces and
fluxes

n-1
Ta=—2]?-X?. (5.96)
i=1
where
n-1
X == A5 Ty (5.97)
k=1
and
a; Ck
A% = 8y + —— . 5.98
ik ik + an Ci ( )

The independent fluxes and driving forces, described by eqn
(S.92), (S5.93), (S5.97) and (S.98), are linked via the normalized
reference velocity weighting factor a; and are therefore often
referred to as conjugate pairs.

By setting the weighing factor equal to the species volume
fraction a; = ¢;, one can define the following mean volume

reference velocity,
n
v= Z oiv;
i=1

which is equal to zero for an incompressible mixture relative to
a fixed-volume reference frame. Egn (5.92), (S.97), and (5.98)
combine with a; = ¢; and v* = v = 0 to provide the driving

(5.99)

force,
< iV,
Vi
Xi== ) B+ 22 (Puyr (5.100)
GV
k=1
and conjugate diffusive flux
Ji=Cv;, (s.101)



defined relative to a volume-fixed reference frame, which
closely approximates the fixed-laboratory frame in which
experimental data is acquired. Egn (S.100) combines with
C,V;, = 1 — ¢ to provide

n-1
V.
= ~Owdpr — 7= ) GOdpr  (5102)
k=1

which is identical to the result provided by Batchelor® (cf. egn
(4.1) of his work). Finally, eqn (S.85) and (5.102) combine to
yield

=-Vedrp, (5.103)

which describes the driving force for the diffusion of species i in
a multicomponent liquid, relative to a reference frame in which
the net flux of material volume is zero, and the solvent is force-
free according to

= —(Vit)rp, =0 . (5.104)

The summation in eqn (S.102) accounts for a contribution to
the driving force that acts on component i caused by solvent
backflow, which inevitably occurs when a solute gradient is
established in an incompressible mixture at constant
temperature and pressure in a constant volume diffusion cell.
Interestingly, when the same diffusion process is described
using the McMillan-Mayer framework, the driving force on
component i is given by egn (S.103) and the solvent backflow
contribution is accounted for via an osmotic pressure gradient.
One may imagine a 1-dimensional diffusion cell, separated by a
semipermeable membrane (permeable only to the solvent)
oriented parallel to the flux direction along the diffusion
pathway. In this scenario, the membrane separates the
multicomponent mixture at each local point from pure solvent,
thereby maintaining a constant solvent chemical potential at
each point along the diffusion path, so that the solvent is force-
free. Here, solvent passes through the membrane into the
diffusion cell from the pure solvent reservoir and raises the
osmotic pressure locally in proportion with the local solute
concentration, thereby enhancing the thermodynamic driving
force on component i via a gradient in osmotic pressure, rather
than by backflow of solvent at constant pressure. We note that
the McMillan Mayer framework is useful here because of the
simplicity of eqn (S.103) as compared with (S5.102).

2.5 Diffusivities

2.5.1 Diffusion coefficient matrix [D]

In this section, the main solute diffusivity D,,, given by eqn
(75), is derived starting with egn (69). Egqn (76)—(78) can be
similarly derived to yield the complete matrix [D]. Note, this
appendix is a generalization of our previous derivation for D,
applied to dilute locally monodisperse micellar solutions.” We
begin with eqn (69)

(”Zf‘"‘l”‘)ac Zhu acj .(5.105)

N

Duu = Y

i=

Here, n; and Di0 are independent of C,, enabling the following
rearrangement of eqn (S.105)

Daa=za(nD C)<1+Zflk¢k>

i=1
aC;
+ Z n DY Z hijﬁ
i=1 =1 a

(5.106)

derivatives and

The a(n;D2C;)/0C, (1 + ZR_1 fixdr)
Z?’zl h;; 9C;/0C,4 in eqn (H.2) are then rearranged using the

product rule to yield

N

e = o [Zn D CN(l + z ﬁk¢k>}
OXCTEAIWEN

k=1
N N ah
+Z"D¢‘ ac, Zh”q chaca

j=1 j=1

(5.107)

For narrow micelle size distributions, the local species
concentrations and volume fractions can be approximated
using C; = Ctot0;; and ¢; = ¢8;;+, where Cy,r is the total
micelle concentration and §;;+ is a Kronecker delta function. The
function 6;; is nonzero when i = i*, corresponding to a micelle
species i* that represents the distribution mean and has
solutes, m surfactants, radius R;+, and local concentration Cyy¢.
Inserting the Kronecker distribution to eqgn (S.107) and using the
sifting property, which selects a single micelle type i* from the

distribution, provides

(a?)

Dyg=—7——"A+fP)+C, D°¢h % 4 C,DAPL, .
(5.108)
Similarly, one can derive
oD
Dys = C, “BC (1+f¢)+CD d)h +CD ¢Lg . (5.109)
oD
Dgq = C. SBC (1+f¢)+CD d)h +CD ¢L, . (5.110)
and
( D°) 0 0
Dgg=———=(1+f) + C;D; ¢h L4 C,DAPL, . (S.111)
S
where

_of  [o(hy — fii) i
La=g0+ [—] < >j:i=i* . (5.112)

and



d d(hii= — fiir dh;;
P G 70) I L7 W

BC aCs -~ aCs ). . .,

i=i j=i=i

In egn (S.108-S.113), f = f;*» and h = h;+;» account for
interactions between micelles of the same type. For a ternary,
single phase mixture in local equilibrium, f;; and h;; can be
written as functions of intensive state variables according to
fij = fij(T'l'ln' Ca' CS) = fij(T'l'ln' Ca/Cs'd)) and hij =
hij (T, iy, Cq, Cs) = hij (T, py, Cq/Cs, ¢). Using the chain rule,
the partial derivatives for f;; with respect to C, and C; are given
by

0fij _0fij 09(Ca/Cs)  Ofi; 0§

ac,  0(C,/Cy) aC, ap aC, ' (5.114)
and

0fij _  0fy  0(Ca/Cs)  Ofi; 09 (5.115)

ac, — a(C,/C;)  AC ap aC,

In eqn (S.114) and S.115), the volume fraction and molar ratio
derivatives are evaluated to provide

of: C of of
aﬂz_a—fll +ﬂ¢a, (5.116)
9C,  Cs0(Ca/Cs) 09
and
0fij Cqo Ofj 9fij
CSB_CS_ —C—Sm 2 = (¢ — o) - (5.117)
Eqn (S.116) and (S.117) combine to give
ofij dfij dfij
CaﬁJrCSacs_ e (5.118)
Similarly, one finds
oh;; doh;; oh;;
Ly —L=9p—2L (5.119)

*9c, Sac,” T ap -
Eqn (S.112), (S.113), (S.118), and (S.119) combine to yield
Colg + CsLg = L. (5.120)

where

3 [Pt
e W 7 O

Differentiating the Stokes Einstein equation Di(l = kgT/(61NR;+),
one finds

(5.121)

alnDY.  dlnR; (5.122)
dlnC, = alnC, * :
and
dlnDY.  dInR;- (5.123)
dlnC;, ~ alnC, :

Furthermore, the total micelle concentration is differentiated
according to

ailnC, dInR;-
Oinlror _ $a _ : (5.124)
ailnC, [0) alnC,
and
alnCmt (l)a alan‘*
aInc. _1_?+361nca (5.125)

Finally, egn (S.108)—(S.111), (5.120), and (S.122)—(S.125) yield
Daa

Do =1+fp—-—M, (5.126)
-
Dgs _ta 2
F—C—{(A+g)¢+[(f+g)A+L]¢ +M},  (5.127)
i
Dsa CS
=——M, S5.128
e (5.128)
and
Dy,
D—O_ 1+ (A+f+9)p+[F+DA+L]p2+M, (5.129)
i
where the function Mis given by
dInR;
M = [1+(f +3h)¢] — hepy — Calad, (5.130)
dalnC,
and
h=A+g+(f+gAp, (5.131)
2.5.2 Long-time self (D) and gradient (D) diffusivities
In this section, gradient and long-time self diffusion

coefficients (D, and D, respectively) for a monodisperse
particle suspension are derived by evaluating the diffusive flux
for a polydisperse colloidal suspension comprising N different
particle types and subsequently applying a delta distribution
function. We begin by considering a polydisperse colloidal
suspension comprising N different particle types. The total
diffusive flux J is determined by summing over all of the species
fluxes J; according to

i=1 i=1j=1

(5.132)

where the diffusion coefficient matrix D;; is given by combining
eqgn (49), (59), and (66) to provide

D;
DL(; - 61/ <1+Zﬁk¢k>+hu¢l (5-133)
With the function h;; given by
hl} -~ ~ ~
—S =4+ g5+ ) (Aijfuc + 9uhij) i - (5.134)

Aij k=1

The species concentration gradient is expanded using the chain
rule: Vop; = d¢;/3¢p V¢ and combined with eqn (S.132)-
(S.134) to yield



29,
611(1+Zﬁk¢k> Py Zhl, Ditvo.

(5.135)

Here, DL-O is independent of ¢, enabling the following re-
arrangement of eqn (1.4)

- = ;a(';f)(HZﬁm)m
+ZDfO¢i Z y a¢>
i=1

(5.136)

The  derivatives  9(DP¢;)/0¢ (1 + XN_1 fibi) and
Z?’zl hij 0¢;/0¢ in eqn (S.136) are then re-arranged using the
product rule to provide

N N
d
-1 = %[; DY, (1 + Z ﬁ-m)} v

i D155 <Z ﬁkcpk) v
S fs(Sn

N
"2

(5.137)

The Kronecker delta distribution ¢; =
eqgn (S.137) to provide

@98, is combined with

~J=D2{1+ (A+f+g)p+[(f+9A+L]p*}ve, (5.138)
where
f 9(hy — fur)
L= 6¢ [—] <6¢> (5.139)

Eqn (S.138) describes gradient diffusion in a monodisperse
colloidal dispersion according to the diffusivity D,

c=1+(A+f+g)p+[(f+9A+L]p? (5.140)

-

To determine the long-time self diffusion coefficient Dy,
again consider a multicomponent mixture with N distinct
colloidal species. However, in this scenario, a thermodynamic
driving forces acts only on the species i, which is present in
vanishingly small amount such that ¢»; = 0, and the remaining
species are force free. The flux of species i for this case is given
by

N
=Ji=DVp; = ) D;jV¢ep; . (S.141)
jzzl J J

Eqn (S.133) and (S.141) combine with ¢; = 0 to provide

N

Dy
_D°=1+ E fiucPr -
i k=1

(5.142)

For mixtures of monodisperse particles f;; = f, so that the
long-time self diffusion coefficient at arbitrary concentration is
given by

=1+f¢, (5.143)

t;lb

~o

S3 Derivations for limiting special cases

3.1 Scattering functions B and Ry for locally monodisperse
micelles

In this section, the mode amplitude ratio B, and the Rayleigh
ratio Rgg are derived in the limit as the local micelle
polydispersity approaches zero. First, eqn (34)—(36) and (51)—
(53) combine to produce the elements of the diagonalized
chemical potential derivative matrix [ﬁ]

. _<an) +C“p <an) z
ae—\ac c, % \ac

a

C
- CsGsa (C_Psa - 1)
s

a7 Topn S”T,pn
(S.144)
and
6= +Ln (M) —ciga(Ehe-1)
9Cs)y, " Co ® \0Ca),, Ca
(S5.145)

In the limit as the local micelle polydispersity approaches zero,
Gsq — —0, so that eqn (27), (85), (90), (S.144) and (S5.145)
combine to yield the ratio

B=0, (5.146)

and eqn (26), (84), and (S.146) provide the field correlation
function

9P (g, 0)| = exp{—qg?D2[1 + (f + K + L2t} ,  (S.147)

Now, turning our attention toward the Rayleigh ratio, a general
form for the osmotic pressure in a mixture of monodisperse
micelles is given by

= CrotZ(®) (5.148)

NkT

Differentiating eqn (S.148) with respect to either C, or Cs and
combining the results with egn (85) and (S.145) yields



CZA_C(6H> C(BI'[)
s s ac, i aC; Tt
0Z(¢p)  9Z(¢)
- Cf"fNAkBT{[alnc *3inc
a S
alnCtDt alncmt)
+ Z(¢)< dlnC, + dlnCq ’

(5.149)

Differentiation of the total micelle concentration Cy,; = C;/m
provides

alnCtDt alnﬁl
alnC,  alnC, (5.150)
and
alnCtDt alnﬁl
alnC, ~  alnC, (5.151)

As argued in our previous work,” if the aggregation number is a
univariate function of the solute to surfactant molar ratio C,/Cs
at constant temperature and pressure, then the aggregation
number derivatives are related via

dlnm _ dlnin (5.152)
dlnC,~  dlnC, '
Hence, eqn (5.150)—(S.152) combine to give
OlnCeoe  0lnCrop
dlnC, = dlnC, ~ (5.153)

Furthermore, the compressibility factor derivatives in eqn
(S.149) can be expanded using the chain rule, so that

0Z(¢)  0Z(¢)  dZ(¢) dlng  dlng
dlnC,  dlnC, ~ * d¢ <alnCa alnCs)

(5.154)

Differentiation of the volume fraction ¢ = C,V, + C;V,; with
respect to C, gives

alng ¢,
alnC, ¢ °

(5.155)

Now, differentiating with respect to C; and using C;Vys = ¢ —
¢q, we have

dlng ba
alnCS_l_?' (5.156)
Hence, eqn (S.155) and (S.156) combine to provide
aln¢> aln¢
ainC, BlnC =1 (5.157)
Eqn (5.149), (S.153), and (S.157) combine to produce
Cs* G dZ(¢) dlpZ(¢)]
= +7Z(p)=—77"T—. (5.158)
ColiaksT - ?7dp TP =5

The diagonalized refractive index increment R; is evaluated
using eqgn (31)—(33) and (85)

10

R, = ?<%) (5.159)

Finally, eqn (39), (5.146), (5.158), (S.159),and ¢ = N, Cs/m V;
yield

b, Tca/cs

-1
d[¢Z(¢)]} (5.160)

R <an) v ¢{
90 = -7 \54 i
AO4 a¢ p.T,Ca/Cs L d¢

3.2 Onsager matrix [L] for locally monodisperse micelles

The main Onsager coefficient L, in eqn (99) is derived in this
appendix. Eqn (100) and (101) can be derived using a similar
approach to provide the complete Onsager matrix [L]. We
begin by evaluating the determinant of the chemical potential
derivative matrix [G] using eqn (51)—(53)

C.C.I6] = (617) (617)
ac aCs Tt

a1
~Galta(5g,), +
@’ T,pun

Eqgn (53), (95), and (S.161) combine in the limit as the local
micelle polydispersity approaches zero, so that Gy, = —o0 , to
produce

. (617)
aC; T

} .(5.161)

Cy?Dgg + C,CsDys

Laa = (5.162)
all ol
cloty),, +o (),
Per eqn (5.149) and (S.158)
on on dl9Z(9)]
C <6Ca)Tu C <6C5)Tu - CtOtNAkBT{T} . (5.163)

Eqn (S.162) and (S.163) combine with C, = nCy,, to give

2 Crot Cs o\ [dlpz@)
L= D +=5p 1222 @] $.164
aa NyksT ( aa T C, as) d¢ ( )
Using eqn (75)—(78), (84), we have
C C
Daa+_sDas =Dss+_aDsa =D, . (5.165)
(o Cs

As discussed in the main text, and in section 2.5.2 of SI, the
eigenvalue D, is equal to the gradient diffusion coefficient for
monodisperse particle dispersions. Hence, D, can be described
using the following generalized Stokes-Einstein equation

D, = D2K(¢) dlg dgd))] (5.166)
Eqgn (5.164)—(S.166) combine to yield
_ T_lzctotDiO*
Log = WK(cp) . (5.167)

This approach may be used to derive the remaining Onsager
coefficients, applicable to locally monodisperse mixtures at arbitrary
concentration:



0

D
Lgs = Lsq = MCrot <m> K(¢) (5.168)

and

DY
Lgs = M*Cro; <m> K(®). (5.169)

3.3 [G] in the tracer limit

In this section, we provide a detailed derivation for [G] in
the tracer limit, given by eqn (128)—(130). We begin with eqn
(52)

1 alnCl
C,0InC,

(5.170)

N
NykgT ac;
Gsa = ( my ) + ZA” (aca
]:

The derivation in this section is simplified by introducing the
following function

A= (1= P)Ay 5, (5.171)
so that eqn (S.170) can be rewritten as
N
my(1—¢)G 1—-¢)olnC _ (0C;
1( $)Gsq _ ( ) 1 +ZA11' 4 (5.172)
NAkBT Ca 6lnCa . [)Ca
]:

The summation in eqn (5.172) is then rearranged, using the
product rule, to the following more amenable form:

N

Z (ac) ac, ZCAU ‘ZN: (2;1’>. (5.173)

j=1 Jj=1

For micelle distributions that are monomodal and narrow, the
micelle distribution function can be reasonable approximated
using a Kronecker delta distribution function C; = C;o:6j)+
According to this definition, C; is nonzero only when the index
j =j*, which denotes a micelle type representative of the
distribution mean and characterized as having m solutes, m
surfactants, radius Rj+, and concentration C,;, all of which are
functions of composition (C,/Cs). Inserting the Kronecker

distribution into eqn (S.173) yields,
N
> (ﬁ> 5C Z Cuotd)-Ayj
j=1
Z Ctot ( ]> .

Using the sifting property, which selects a micelle type j* from

(5.174)

a set of N different micelle types, the summations on the right-
hand side of eqn (S.174) are evaluated to give

N-1

E A (ct (A1) = Crot o4y . (5.175)
SV ac otf1) *\oc.) _,

Jj= =

The derivative 6(Ctotﬁlj*)/6Ca in eqn (S.175) can be expanded
with the product rule to provide

N ~
_ (3G . 9Ci 0hyy (94
ZAI] <_aca> - Al]* _aca + CtDt aC aca ]_]* . (5. 176)
J= -

In order to determine the first term on the right-hand side of
eqgn (S.176) we start by combining eqn (49), (125), and (S5.171)
with k = 1 to give

Ay = %{d13 +d;° + di*d;ng
+3dydi[dy (1 + dyn) (1 + di*ny)
+ 9d12dj2772 a1+ d1772)(1 + dinz)} :
(5.177)

where d; and d; are the respective diameters of a solute-free
and a type j particle,

&y
1-¢ "’

Ny = (5.178)

and

(5.179)

N
= Z ¢id" .
=1

Using the Kronecker distribution, so that C; = C;,:6;;- and ¢; =
CtotN4V;6;i+, eqn (S.177)—(S.179) combine to yield

Aqj
\3
_ (d_> . fe|@) -1)o)
dy (1-¢) e
o 1 @)+ ](@) 1))
+3<d_1> O
ol G elfie[8) - o)
3<d_1> (1-¢)?
[+ @-1)o][r+ (G- 1)e)
+9¢ <d(j]d]-*> A-¢)°
(5.180)
Imposing j = j* onto eqn (S.180) provides
- 3 4
w 1 (-1)o
5213=<?1>+(1i¢)+3<d1> a7
+3<df"> {1 (@) -]}
o)
1+(7-—-1)¢
9¢’<d1> g
(5.181)
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With the aid of Mathematica, egn (S.181) simplifies to

Ay e 312 301+ ¢ —2¢2) (1+2¢)?
%dﬁ 1-9¢) 1-9¢)3 1-¢)3"
(5.182)

where A = d;-/d, is a micelle size ratio. Multiplying eqn (S.182)
by 173 provides

Ay - 317t N 3A72(1 4+ ¢ —2¢2)  A73(1 + 2¢9)?
gt (1-¢) (1-¢)° (1-¢)°
(5.183)

Furthermore, using eqn (S.150) and eqn (A.16) from Appendix A
in our previous work,” we find

alnC, dlnR;+
tor _ Pa _ ! (5.184)
alnC, [0) alnC,
Egn (S.183), (S.184), and ¢)=CtotNA7r/6d]-*3 combine to

provide the first term on the right-hand side of eqn (5.176),

- 0C 1 { + 3171 + 3172(1 + ¢ — 2¢%)
Yac, (1-¢) (1-¢)3
A73(1+ 2¢)? Rj«
Now, focusing on the second term of egn (S.176),

differentiation of eqn (S.180) and (S.182) with respect to solute
concentration C, is accomplished via symbolic computation
performed using Mathematica to provide

aAU 04,
aC, \oC, ) _.
J=J

1 {1 +/1—1(2 — 3¢+ ¢3)
Ca (1 - ¢)3
A72(1+ 69 — 692 — %)
0D
13p(2+ ) dlnR;-
T—or 13 3me. (5.186)
where we have wused dInR;-/0InC, = dlnd;-/0dInC,.

Combination of egn (5.172), (S.176), (5.185), and (S.186), again
via symbolic computation using Mathematica, yield

ml(l - ¢)Gsa ¢a
NakgT =a _d’)c az c
1 alnR
- B, ¢) = C. 3InC, (5.187)
where
3 ~ 371 3214 ¢ —2¢2)  A73(1+ 2¢)?
ALY =1+t gy a-¢r
(5.188)
and

12

30+ +92)
(1-¢)?

A2+ ¢)
a-¢)

To evaluate the solute-free micelle derivative in eqn (5.187),
consider the Poisson distribution, given by

B(A,¢) =3¢ {,1—1 + } (5.189)

Cyn™
€ =2 exp(-n) .

5.190
M ( )

where 71, the average number of solutes per micelle, is equal to
the distribution variance. The Poisson distribution, which is
derived assuming ideal mixing between solute and surfactant
within micelles, and is considered valid when 7« m,3 9 is
useful here because the Poisson variance approaches zero n —
0 in the tracer limit as C, — 0, causing eqn (S.190) to approach
a Kronecker delta function

Cyn™

Cs
lim ——exp( n) = m—&l .

] (5.191)

Hence, in the tracer limit, the Poisson distribution becomes
consistent with the delta distribution applied earlier in this
derivation to evaluate the summation given by eqn (5.173).
Differentiation of eqn (S.191) for i = 1 yields

6lnC1
alnC,

dlnm
) (5.192)

21_(7_”’1)( alnC,
a

Combining eqgn (5.192) with eqn (A.16) from Appendix A in our
previous work,” we have

dinR;+ ¢
=1-@+1)(1+3-"2L -2,
@+ )< 3 Ginc, ¢>>

Eqgn (S.187) and (5.193) combine to provide

alnCl
dinC,

(5.193)

ml(l B ¢)Gsa _ n 1 (1- ¢)(ﬁ +1) $a
B b
1 dinR;
—BAL.®) 30 -9+ Dl =5
(5.194)

In the limit as C, — 0, for whichA - 1,7 —» 0,n/C,; » m,/Cs,
1/C, (8InR;+/dInC,) - a1/ (R, Cs), ¢ = CsVps, and ¢o/Cq —
V,, with the aid of Mathematica, eqn (S5.188), (5.189), and
(S.194) simplify to

3a; (1+¢+¢?)
mR; (1—¢)3

CsGsa _ o (1+29)

NakgT —  myVps A —)*

(5.195)

In order to determine the remaining elements of the matrix [G],
defined by eqn (51) and (53), one must evaluate the osmotic
pressure derivatives (0I1/3Cy)r,, and (811/0Cs)r,,.
Imposing the delta distribution C; = C¢o:6;;+ on eqn (124)
provides the Percus-Yevick result for monodisperse hard
spheres

n  (A+¢+¢?)
NakgT — 7% (1 —¢)3

(5.196)



Differentiation of eqn (5.196) with respect to C, provides

(0I/0C)rp, _ Cror [(1 — ¢*)0nCror 2+ ¢)*  ding
NykgT  Cp ((1—¢)* dlnC, (1 —¢)* " dlnC,
(5.197)

Using eqgn (S5.197), (S.155), and (S.184) with C.,; = C;/m , we
have

(an/aca)T,p.n _ Cs/Ca
NikgT  mp(1 — ¢)* {(1 +20)'¢a
—3(1 — ¢y LB (5.198)
alnC, ) ’

The osmotic pressure derivative with respect to surfactant
concentration Cg is similarly derived, using egn (S.153) and
(S.157),

@I/0Cs)T,u, 3 1
NukgT  mp(1— ¢)* {(1 +2¢)%(¢ — ¢a)
+30(1—¢*) 5= } : (5.199)
In the tracer limit, as (dinR;-/dInC,) - 0,

1/C,4 (8InR;-/9InC,) = a;/(R1Cs), g = 0, pa/Cq > Vg, and
¢ — CsVs, eqn (5.198) and (5.199) reduce to

OM/3C)ru, Vo (1+2¢)* 3a, (1-¢°)
NikgT  muVps (1—)*  miR, (1— ¢)* (5.200)
and
(an/acs)T,p.n _ (1 + 2¢)2
T T Mgy (5.201)

Finally, egn (51), (53), (5.195), (S.200), and (5.201) yield [G] in
the tracer limit, with elements given by

Colas
NkgT =1, (5.202)
CsGas _ CsGsa _ . _ 30 (1+¢+0?)
NAkBT NAkBT m1R1 (1 - ¢)3
7, (1+2¢)?
a( ¢) (5.203)

mlvhs (1 - ¢)4 !
and

CGos 1 (1+2¢)
NykgT B my (1—¢)* -~

(5.204)

3.4 [G], Rog, By, and [L] for the label limit

In this section, the micelle chemical potential derivative
matrix [G], the Rayleigh ratio Rgy, and the mode amplitude
ratio By are derived for the label limit, where solute behaves
as a volume-less label in a mixture of equally sized micelles with
¢q =0, m =m,, and R;+ = R,, where m; and R, are the
solute-free micelle aggregation number and radius,
respectively. Starting with our derivation for [G], we begin with

eqn (52)

Mbas _ Mibsa _ 1 Olnty +iA1- <£> . (5.205)
NakgT  NpokgT C,0InC, = T\ac,

For the label limit, micelles are distinguished only by the

labels, which do not affect the

interaction potentials between various micelle types. Hence,

Aij = A, and eqn (5.205) combines with 0C.,;/9C, = 0 to

provide,

number of solubilizate

myGs, 1 0InCy

NykgT ~ C,0InC,

(5.206)

The osmotic pressure derivatives are determined using eqn
(47)—(49), (45), Axj = A, and 0Ct,: /9C, = 0, yielding

a1
(—) —0. (5.207)
ac, Tt
Using (S.207) with (5.163), we have
my(0I1/aC dl¢pZ
1O0/3C)r,, _dl9Z@)] (5.208)
NykgT do
Eqn (51)—(53), (S.206)—(S.208), and ¢, =0 combine to
generate [G] in the label limit, equal to
NAkBT alnCl
Gaa == nC, olnC, ' (5.209)
_ _NAkBTalnCl
Gos = Gsq = AC, oInC, ' (5.210)
and
NykgT (d[pZ alnC
Ges = AKB (¢ (d’)]_ ntq ' (5.211)
myCs do dalnC,

Derivations for Rqo and B;; for labelled micelles are similar
that those in section 3.1. We begin by combining eqn (S.144)
and (S.145) with (145), and (S5.206)—(S.208) to yield the
diagonalized elements of [G] in the label limit

C.G, __GomG (5.212)
NAkBT Ca 6lnCa ’
and
mCsGy  d[pZ(¢)] (5.213)

NykgT ~—  do

The diagonalized refractive index increments are evaluated
using eqn (30)—(33), (145), and ¥, = 0 to give

1 0
R, = —{—n} (5.214)
Csl0(Ca/C)) g

and

R, = ?(Z—;) (5.215)

p.T.Ca/Cs
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Egn (27), (39), (S.212)—(S.215), and ¢p = N, C;/m, V; combine
to yield the Rayleigh ratio

Rgo =

472n? 19n\? [¢Z(¢)]
Aot (a¢)p”a Jc. V1¢{ de

Where V; is the volume of a solute-free micelle and the mode
amplitude ratio is given by

B {[Bn/a(Ca/Cs)]p,T,¢}2
L= ¢(an/a¢)p,T,Ca/Cs

} (1+By) ,(S.216)

(Ca/C)*  dlZ(P)]
(—=0InC,/0InC,) d¢p

(5.217)

In order to derive the Onsager coefficient matrix [L], we start
by evaluating the determinant of [G] using eqn (S.161), (5.207),
(5.208), (5.210), and 7iCs = M, C,

dl¢Z(¢)]

1= () () "%

Eqn (95) and (133)—(141), and (S.218) combine to provide

alnC
1) (5.218)

alnC,

_ D°
Laaznch"f(NAkBT) [K(¢)+( alnCl/alnCa)] (5.219)

Similar arguments yield the remaining Onsager coefficients:

DO
Lgs = Lsq = im1 Cyot <N k T> () (5.220)

and

DO
Lss = my*Cror <N A T> (¢). (5.221)
3.5 Ry for binary mixtures of monodisperse micelles with
crowding-induced dehydration

In this section, we derive the Rayleigh ratio for a binary
mixture of hydrated surfactant (s) and water (w) with a
concentration dependent hydration index ny = ny(T,p, Cs)
and a constant aggregation number m;. For this system, the
total entropy fluctuation at constant temperature T and
scattering volume V is given by

1
6Sr = —ﬁ(cS/,tw(SNW + Sug6Ng) (5.222)
where u,, and us are the chemical potentials for water and
hydrated surfactant and N,, and N are the respective numbers
of moles in the scattering volume V. Imposing constant volume,
we have

8V = 8[V,N,, + (7 + ny¥,)N;] = 0 . (5.223)

Solving eqn (S5.223) for the fluctuation in the number of moles

of water provides
— —
( s W) 6NS .

5N,, = —Nyony — (5.224)

+ny
Vi
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At constant temperature, pressure, and volume, the total
fluctuation differential in the hydration index is given by

6nH 6TLH
Sny = ( ) SN, = (—) sc, (S.225)
V \ON, oT aCs oT
and eqgn (S.224) and (S.225) combine to yield
on V. + ny¥,
5N,, = —V cs( ”) +(S_—”W) 5Cs | (5.226)
aCs Vi,

which indicates that hydrated surfactant displaces free water at
constant volume and adds to N,, via the transfer of bound water
from hydrated surfactant to bulk water via dehydration.

Now, using the Gibbs-Duhem relation at constant
temperature, pressure, and volume, and solving for the free
water fluctuation du,, provides

V N, Cs

Spy = ———>8u, = ——>5u; . S.227
Uy VN, Us C, Us ( )

The total fluctuation differential in hydrated surfactant
chemical potential at constant temperature, pressure, and

volume is given by

V (ous ops
s =—( ) SN, = ( ) sc, | (5.228)
H=y\an,),,. " " \ac,) 0
and eqgn (S.227) and (S.228) combine
G5 (0ps
Sy = cw(ac) sC, . (5.229)

S“pT

Now, eqn (S.222), (S.226), and (S.229) combine with ¢ =
Cs(V, + nyV,) and 1 — ¢ = C,V,, to provide

4 1 Oug . 6nH) 2
057 = _ﬁ(1 — ¢) (acs)pT [1 T (acs o 0™ -
(5.230)

Eqn (5.90) reduces for a binary mixture to provide

(1 : ¢) (aus) ot (Zléz)mw '

and egn (S.230) and (S.231) yield

ops 25 (0Ny 2
(6C> [1 +Cs VW(‘?Cs)p’T 6Cs° . (5.232)

(5.231)

65’[' =

The master formula for fluctuation theory provides the
probability for a fluctuation §C; in the scattering volume VV

V. (Ous an,
‘W(m) LG Vw(ac)

P(8C,) =.Q_1e{ cg} , (5.233)

and is integrated over all possible fluctuations to determine the
normalization constant



1+cszl7w(—%’é§’) .
P,

6652}

_L(ﬂ)
2kgT\3Cs )7,

=(6Cs) = fd (5Cs)e{

—oo

\
(s ony '
Lv(acs)w [1+c 7, (ac ) J
Using eqgn (S.233) and (S.234), the mean-square fluctuation in
the surfactant concentration is given by

N[ =

(5.234)

[ee)

(5C,2) = f d (5C,)8C,2P(5C;)

—00

° __V_(ous 14,27, (L4 ]662}
=01 f d(acs)acsze{ a0 )y, |6 (GE),, o0

—00

(ks 25 anH) '
V(acs)mw [1 +Gs VW(acs o

In order determine the Rayleigh ratio, we will need the
fluctuation in the dielectric constant
e[T,p, Cs,ny (T, p, Cs)], which is expanded in reciprocal space at
constant temperature and pressure to provide

(5.235)

£ =

de
dny(q,t) + (ac ) 5C,(q,t) , (5.236)

S"p,Tny

5e(q,t) = (;72)

p.T.Cs

In egn (S.236), §Cs(q,0) is the Fourier transform of the local
surfactant concentration fluctuation §Cs (7, 0), given by

1 o
5Cs(q,0) =7 f drei@T5Cy(r,0) . (5.237)
14

Eqn (S.225) and (S.236) combine to yield

9 9 9
se(qt) = (—5) +(—£) ( "”) 5C,(q,1) ,(S.238)
0 g \omn)  \aC),,

Using eqgn (S.238), the ensemble averaged time correlation
function for fluctuations in € is given by

de de ony
6¢*(q,0)de(q, t)) = +(z—
(8¢*(q,0)0¢(q, 1)) (acs)m (6nH)p'T' (ac)”
%X (6C5(q,0)6C5(q, 1)) .
(5.239)

Now, setting t = 0 and using eqn (S.237) in the limit gR;~ — 0, the
mean square fluctuation in surfactant concentration is given by

2
(6C5(q,0)6C,(q,0)) = ([%f dr 5Cy(r, 0)] ) = (8Cs%) . (5.240)
14

Eqgn (S.235), (S.239) and (S.240) combine with t = 0 to provide

9]
SR

(5.241)

d d
(%)N * (aer)M (

(62*(q,0)52(q, 0)) =
s
v (acs)T,Hw [1 +Cs

VW

The Rayleigh ratio Rq at constant temperature and pressure is
determined by combining eqn (37) and (S.241) and €2 = n*, and
ks = 2mn /2, to provide

(58), 0, 50,0, ), ]
1(q)R2 _ 4-71'21’l2 aCS pTny anH p.T.Cs

LV 1o 2 BnH ]
W

Ry =

[1 e
kgT
«— B
% (a.“s>
aCS T, 1w
(S.242)

The surfactant chemical potential derivative (aus/aCs)T,#W is
determined using (S.73), reduced for a binary mixture

(o) L@
aCs Ty Cs \0C, Tty ’

and a general form for the osmotic pressure in a mixture of
monodisperse micelles

(5.243)

—— = CtotZ . S.244
T = CaZ(®) (5.244)
where Z(¢) is the compressibility factor. Eqn (S.242)—(S.244)

and Ct,; = Cs/m; combine to yield

an\?
4m?n? (W) Comy (d[CsZ -
Rgy = 7; :1 s/Tp le{ [ ;C(fﬁ)]} (5.245)
0 [1+c V(%%H) ] 4 s
where, according to the chain rule,
(6n) _ (6n) + ( an ) (6nH> (5.246)
aCs Tp aCs T ony PT.Ce aCs oT '
Furthermore, using eqn (94), we have
dlCZ(9)] (1 +2¢)* —p*(4— @)
dc, (1-¢)*
_ (0n (4 +4¢ —2¢?)
- C%7, ( ”) T T (5.247)
aCS p.T (1 - ¢)4

A check for the results given by eqn (5.245)—(S.247) is provided
by removing dehydration, so that (dny/dCs),r = 0 and the
hydrated surfactant molar volume V,; = V; + nyV,, is constant.
As a result, using ¢ = CV,s and m,V,,o/N, = V;, eqn (S.245)
reduces to

15



which

Ry =

(5.248)

4m?n? (6n>2 dlpz(P)1) "
d¢ ’

2t \og/,

is consistent with Rgy or a binary mixture of

monodisperse hard spheres.
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