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Free Energy Minimization

To find thermodynamic equilibrium, we need to minimize G with respect to  and 

leading to the following equations,
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Here, °
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 , and ° 0

*
PvP


 . We can re-write equations (S1a) – (S1b) in the following 

form,
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Solutions of equations (S2a)—(S2b) describe the equilibrium values of  and for any 

given T and P.

Equations of evolution for non-equilibrium case (isobaric cooling from equilibrium melt)

To describe the non-equilibrium behavior of  and during, e.g., cooling from high-

temperature equilibrium phase, we used a simple “relaxation time approximation”, stipulating1 

that the relaxation time for is the JG -relaxation and the relaxation time for  is the (often 

much slower) -relaxation,
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Here, we define * and *  in the following way. First, we solve equations (S2a)—(S2b) to 

obtain the equilibrium values,  ,eq T P  and  ,eq T P . Next, we set  * ,eq T P  and update 

 using equation (S4b). Finally, we re-calculate *  by solving equation (S2a) with the new value 

of  . Note that this approach is similar in spirit to well-known Tool-Narayanaswami-Moynihan 

(TNM)2–4 and Kovacs–Aklonis–Hutchinson–Ramos (KAHR)5 models.

To simplify the non-equilibrium modeling even further, we consider the following 

assumption. Let us define Tg (≥ TX) as the temperature below which the temperature change 

becomes faster than the -relaxation, i.e.,  1 1g gT q T
  (where dTq

dt
 is the cooling rate). 

In this case, for T > Tg, both  and  equilibrate fully, while for T < Tg,  eq gT   does not 

change, while *( ; )T    still continues to increase as the temperature is decreased, but 

significantly slower than in the equilibrium limit. For more details, see ref.6 and the main text.

Derivation of the Casalini-Roland Scaling

The specific volume of a material can be expressed in terms of  and as,
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where ,0spv can depend on pressure but not on temperature. The scaling relationships proposed 

by Casalini, Roland, and co-workers suggest that,7–9

    , ,spT P f T v T P


     
(S6)

where is a material-dependent constant, independent of T and P. This scaling means that the 

state of the material depends not on T and P independently, but on a combined state variable 

  ,spX T v T P


 . On the other hand, in refs.1,6 we demonstrated that in the limit of sufficiently 

low pressures, equations 6a and 6b can be re-written as,

   
  , exp 1L

X

E P
T P Z

RT P 

 
  

 
(S7a)

         

 
      

     

, exp ,

exp 1 1

L S L

L S L

X X

E P E P E P
T P T P

RT RT

E P E P E P
Z Z Z

RT P RT P

  

 





 
  

 

 
    

 

(S7b)

Here, 
 

1
X

TZ
T P

   is a different “state variable” that also combines the effects of temperature 

and pressure. As discussed in ref. 1, the solid fraction    ,T P Z   for the equilibrium case 

(above the glass transition); also, for constant-cooling-rate experiments performed at different 
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pressures, a similar relationship holds as well,    
, ; ;

g

TT P q q
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 (the ratio /g XT T is 

slightly cooling-rate dependent, but pressure-independent for any given cooling rate q). 

Going back to the (TV) scaling relationships, we can substitute equation (S5) into 

equation (S6) to obtain,
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 To satisfy the scaling, we need to eliminate the explicit pressure dependence in equation (S8), 

leading to the equations (5a) and (5b) of the main text. 

Experimental Data and their Scaling Analysis

Experimental data for o-terphenyl (OTP),10–12 phenylphthalein-dimethylether (PDE),13,14 

and polychlorinated biphenyl (PCB62)15,16 are summarized in Figure S1 (specific volume) and S2 

(dielectric relaxation time) for multiple pressures and temperatures. The data for OTP were 

collected using isobaric measurements (as a function of temperature for constant pressure), 

while the data for PDE and PCB62 were collected using isothermal measurements (as a function 

of pressure for constant temperature). 
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Figure S 1. Specific volume data for OTP (top; isothermal), PCB62 (middle; isobaric), and PDE (bottom; isobaric).
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Figure S 2. Dielectric relaxation time data for OTP (top; isothermal), PCB62 (middle; isobaric), and PDE (bottom; 
isobaric).
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The Scaling Exponent

In Table S1, the scaling exponent regressed using our current approach is compared to 

the earlier analysis of Casalini and Roland17 for PDE, OTP, and PCB62. The row called “ (Casalini-

Roland)” corresponds to their estimate of using thermodynamic relationships, while the row “ 

(exp)” is the result of direct scaling analysis similar to ours. As expected, our regression is within 

the error bars from “ (exp)” and very close to “ (Casalini-Roland)”. 

Table S 1. The scaling exponent from current work and earlier analysis of Casalini and Roland.

Parameter PDE PCB OTP
(current work) 4.6 ± 0.3 8.5 ± 0.7 4.05 ± 0.25
(Casalini-Roland) 4.5 ± 0.3 8.1 ± 0.86 4.05 ± 0.3

(exp) 4.5 8.5 4.0

Relationship between SL-TS2 Model Parameters and Experimental Characteristics of the 

Material

Here, we describe in detail how the parameters of the SL-TS2 model are related to the 

measured characteristics of the material. We illustrate it on the example of ortho-terphenyl 

(OTP). As a reminder, the modeling refers to the case of ambient pressure (P = 0) – the data for 

higher pressure are captured by the scaling relationships (equations 5a and 5b of the main text) 

The model parameters and the experimental parameters used to characterize the specific 

volume and the relaxation time (as functions of temperature under atmospheric pressure) are 

summarized in Table S2 below. 
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Table S 2. SL-TS2 parameters and the experimentally determined parameters used to characterize the specific volume 
and relaxation time of glass-formers as functions of temperature. The highlighted rows correspond to the SL-TS2 parameters 

that are identical to the experimentally determined ones.

Parameter Units Parameter Units
Tg K Tg K

log(∞) log(∞)
EL kJ/mol Ea kJ/mol
ES kJ/mol TA K
T* K D K

Vsp0 cm3/g T0 K
LL Vsp,g cm3/g

L K-1

 G K-1

SL-TS2 Experimental

r

The SL-TS2 model parameters are:

 Glass transition temperature, Tg;

 Logarithm of the high-temperature relaxation time limit, log(∞);

 Arrhenius activation energy in the liquid state, EL;

 Arrhenius activation energy in the solid state, ES;

 Sanchez-Lacombe characteristic temperature, T*;

 Zero-temperature specific volume of the solid state, Vsp0;

 Ratio of cohesive energies of liquid and solid states, LL;

 Average “size” of the CRR in terms of Sanchez-Lacombe lattice units, 

0.5( )L Sr r r 
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 Relative volume difference between the liquid and solid states, 

0.5( )L Sr r
r

 


The parameters derived from experimental measurements are as follows, 

 Glass transition temperature, Tg;

 Logarithm of the high-temperature relaxation time limit, log(∞);

 Arrhenius activation energy at high temperatures, Ea;

 Temperature corresponding to the transition from VFT-like behavior to Arrhenius-

like behavior, TA;

 VFT energy parameter, D;

 VFT “divergence” temperature, T0;

 Specific volume at T = Tg, Vsp,g;

 Coefficient of volumetric thermal expansion in the glassy state, G;

 Coefficient of volumetric thermal expansion in the liquid state, L. 

Mathematically, the “experimental” parameters correspond to the fitting of the 

experimental data using the following approximate expressions: 

(Relaxation time):
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(Specific volume):
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Equation (S9) uses the description of relaxation time where the VFT model is used for T < 

TA, and the Arrhenius model is used for T > TA. Equation (S10) uses simple one-parameter 

exponential equation of state for specific volume above and below T = Tg; obviously, more 

complex expressions like Tate equation can be used.

The first three parameters in SL-TS2 and “experimental” sets are identical. To determine 

the remaining six SL-TS2 parameters, we need to minimize the “objective function” defined as,

           exp ,exp ,log log log logfit sp sp fitObj T T V T V T    

(S11)

Here, <…> means averaging, and |…| means absolute value. The minimization of the 

objective function is performed using a large number (N = 1000) of calculations where the six SL-

TS2 parameters are varied within a specific region in the parameter space, following an initial 

trial and error process to find the starting point. 
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Before the start of the optimization, we introduce one additional transformation, defining 

the following parameters, 
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The occupancy at the transition, X, is the solution of equation,

±   21ln 1 1 0X X X X XT J
r

            
(S13)

With        2 21 1 2 1 1 1
4X LL LLJ                   .

We will now vary ±
XS and ±

XT as independent parameters and compute r and LL 

afterwards from equations (S12a--c) The meaning of ±
XS and ±

XT is fairly intuitive: ±
XT is the 

“reduced” temperature at which the solid and liquid elements are present in equal numbers, and 
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±
XS is the slope of the dependence of ln

1



on °
1
T

 at this temperature – and thus directly 

related to the fragility of the material.

The specific volume and the relaxation time are expressed in terms of  and  as,
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As a starting point, we determine the temperature, TA, above which the temperature 

dependence of the relaxation time becomes Arrhenius-like. Per Bicerano,18 at least for polymers, 

TA/Tg  1.2; however, this is only a rough guidance that needs to be tested for each specific 

material. For OTP, we plot the dependence of log() on 1000/T (Arrhenius plot) and fit the lower 

portion, between 0 and 1000/TA, to a simple linear function while varying TA and monitoring the 

fit parameters – see Figure S3 and Table S3 below. 
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Figure S 3. Arrhenius plot for OTP. The trendline corresponds to the linear fit to the data, assuming TA = 365 K and 
restricting the fit to points having T > TA.

Table S 3 Coefficient of determination (R2), log(∞), and the liquid-state activation energy, EL as a function of chosen TA.

TA, K R2 log(∞) EL, kJ/mol
315.5 0.9416 -14.73 32.47
337.1 0.9743 -14.23 28.44
349.5 0.9836 -14.01 26.51
365 0.98 -13.92 25.74

Based on this analysis, we can estimate that TA = 330 ± 15 K, log(∞) = -14.2 ± 0.3, and EL 

= 27 ± 3 kJ/mol. (Note that TA is not an SL-TS2 model parameter but log(∞)  and EL are). The 

remaining six SL-TS2 parameters are now determined by running multiple calculations aiming to 

minimize the objective function (equation (S11)). The results are given in Table S4.
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Table S 4. Calculated SL-TS2 parameters (with estimated errors) for OTP.

Parameter Units Value

Tg K 248 ± 2
log(∞) -14.2 ± 0.3

EL kJ/mol 27 ± 3
ES kJ/mol 140 ± 5
T* K 658 ± 5

Vsp0 cm3/g 0.839 ± 0.002
TX K 238 ± 2

2.25 ± 0.25

 0.022 ± 0.004

SL-TS2 for OTP

 ±
XS

Finally, we need to calculate r and LL, as discussed above. By numerically solving equations 

(S12a--c), we obtain: LL = 0.958 ± 0.003, and r = 486 ± 50. Note that bounds on LL are very tight 

– even small variations in LL would lead to significant changes in TX ( ±*
XT T ). 

Note that in general, the “Arrhenius” temperature, TA, is not experimentally accessible; 

even where it is (in the case of OTP), there is a considerable uncertainty about its exact value 

(estimates range from ~335 K (current paper) to ~400 K11 to ~450 K19, depending on the chosen 

criterion). If a glass-former has high glass transition temperature and/or low decomposition 

temperature, TA becomes experimentally inaccessible, and the errors in the determination of EL 

and log(∞) become significantly larger (roughly, ± 10 kJ/mol and ±1.0, respectively). However, 

the errors in the determination of all the other parameters would not be affected significantly. 

More detailed discussion of the topic will be done in future publications.
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