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I. STATISTICAL PROPERTIES OF THE TSRW MODEL

In the context of the fractal renewal theory, there have been studies on the statistical properties

of the stochastic processes [1–3]. For the convenience of readers and discussions of other sec-

tions, by calling some known results presented in Refs. [1, 3], in this appendix we give specific

discussions on the statistical properties of the TSRW model which are distinctly different from

other stochastic processes.

A. Number of renewals between time 0 and t

The probability of n transitions (including jumping from the CTRW state to the LW state and

jumping from the LW state to the CTRW state) between time 0 and t is

Pt(n) = P(0, t, n) = ⟨θ(tn < t < tn+1)⟩, (S1)

in which θ(tn < t < tn+1) is 1 if the event in the parenthesis occurs and 0 otherwise, which implies

that after n transitions, the evolving time t should be tn < t < tn+1, see Fig. 1 (c) of the main text.

The Laplace form of Eq. (S1) with respect to t is

Ps(n) =
⟨ ∫ ∞

0
θ(tn < t < tn+1)e−stdt

⟩
=

⟨ ∫ tn+1

tn
e−stdt

⟩
=

⟨
e−stn 1 − e−sτn+1

s

⟩
. (S2)

Considering the fact that the first transition of the TSRW model is jumping from the CTRW

state towards the LW state, by making use of tn =
∑n

i=1 τi, we have

Ps(n) =
[
ωr(s)ω j(s)

] n
2
1 − ωr(s)

s
, (S3)

for even n, and

Ps(n) =
[
ωr(s)

] n+1
2
[
ω j(s)

] n−1
2

1 − ω j(s)
s

, (S4)

for odd n. Eqs. (S3) and (S4) imply that for even transitions, the number of jumping from the

CTRW state to the LW state nr and the number of jumping from the LW state to the CTRW state

n j are both n
2 , and for odd transitions, nr =

n+1
2 and n j =

n−1
2 .

The average number of transitions in Laplace space can be obtained by making use of Eqs. (S3)

and (S4), which is

⟨n(s)⟩ =
∞∑

n=0

nPs(n) =
ωr(s)[1 + ω j(s)]
s[1 − ωr(s)ω j(s)]

. (S5)
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Inverse transforming Eq. (S5) into the time domain, the average number of transitions is obtained,

while, the specific value of α and β should be taken into account. After inserting Eqs. (12) and

(13) into Eq. (S5), and performing the inverse Laplace transform, the long time behavior of ⟨n(t)⟩
is

⟨n(0, t)⟩ = ⟨n(t)⟩ ≃



2
Tα + Tβ

t, case 1,

2
Γ(1 + β)τβ

tβ, case 2,

2
Γ(1 + α)τα

tα, case 3.

(S6)

From Eq. (S6), it can be seen that for both odd and even n, the average number of jumping from

the CTRW state to the LW state ⟨nr(t)⟩ is approximately equivalent to ⟨n(t)⟩
2 for long time limit,

⟨nr(0, t)⟩ = ⟨nr(t)⟩ ≃



1
Tα + Tβ

t, case 1,

1
Γ(1 + β)τβ

tβ, case 2,

1
Γ(1 + α)τα

tα, case 3.

(S7)

B. The joint PDF of the forward recurrence time

The time E = tN+1 − t is called the forward recurrence time. If tN and tN+1 are defined by

tN < t < tN+1, then N is also a random variable, see Fig. 1 of the main text. Define f (t, E) to be

the PDF of the forward recurrence time E, it can be calculated by summing over N on the PDF

f (t, E,N),

f (t, E,N) =
⟨
δ((E − tN+1 + t)θ(tN < t < tN+1))

⟩
. (S8)

Double Laplace transforming Eq. (S8) with respect to t → s and E → u yields

f (s, u,N) = Lt,E

{
f (t, E,N)

}
=
⟨ ∫ tN+1

tN

dt
∫ ∞

0
dEe−st−uEδ(E − tN+1 + t)

⟩
=
⟨
e−utN+1

e−(s−u)tN+1 − e−(s−u)tN

u − s

⟩
. (S9)

For even N, it is

f (s, u,N) =
[
ωr(s)ω j(s)

] N
2
[
ωr(s) − ωr(u)

]
u − s

, (S10)
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in which ⟨
e−stN+1

⟩
=
[
ωr(s)

] N
2 +1[
ω j(s)

] N
2 ,⟨

e−stN⟩ = [ωr(s)ω j(s)
] N

2 ,⟨
e−u(tN+1−tN )⟩ = ωr(u), (S11)

are applied. Similarly, for odd N, it is

f (s, u,N) =
[
ωr(s)ω j(s)

] N−1
2
[
ω j(s) − ω j(u)

]
ωr(s)

u − s
. (S12)

After summing over N on f (s, u,N), we have

f (s, u) =
[
ωr(s) − ωr(u)

]
+ ωr(s)

[
ω j(s) − ω j(u)

]
(u − s)

[
1 − ωr(s)ω j(s)

] , (S13)

which is the expression of f (t, E) in double Laplace space [1]. If ωr(s) = ω j(s) = ω(s), it reduces

to the result for the single-state process [3],

f (s, u) =
ω(s) − ω(u)

(u − s)[1 − ω(s)]
. (S14)

It is important to calculate the joint PDFs of the forward recurrence time E provided that the

particle is located in the CTRW state or in the LW state at time t, here we define them as fr(t, E)

and f j(t, E), of which the double Laplace form are fr(s, u) and f j(s, u) respectively. By making use

of Eq. (S10), we have

fr(s, u) =
∞∑

N=0, N even

f (s, u,N) =
ωr(s) − ωr(u)

(u − s)
[
1 − ωr(s)ω j(s)

] , (S15)

and by making use of Eq. (S12), we have

f j(s, u) =
∞∑

N=0, N odd

f (s, u,N) =
ωr(s)

[
ω j(s) − ω j(u)

]
(u − s)

[
1 − ωr(s)ω j(s)

] . (S16)

C. The persistence probability

Define Pn(t, t+τ) to be the probability of n transitions between time t and t+τ. The probability

of no renewal happening between time t and t + τ, i.e., the persistence probability, is the one we

care. Define Pr,r,0(t, t+ τ) to be the persistence probability that the particle is located in the CTRW

state at time t and no renewal happens between time t and t + τ, it can be calculated by

Pr,r,0(t, t + τ) =
∫ ∞

τ

fr(t, E)dE. (S17)
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Define P j, j,0(t, t + τ) to be the persistence probability that the particle is located in the LW state at

time t and no renewal happens between time t and t + τ, which is

P j, j,0(t, t + τ) =
∫ ∞

τ

f j(t, E)dE. (S18)

Double Laplace transforming Eq. (S17) with respect to t → s and E → u yields

Pr,r,0(s, u) =
1 − s fr(s, u)

us
, (S19)

and after inserting Eq. (S15) into Eq. (S19), it arrives at

Pr,r,0(s, u) =
(u − s)[1 − ωr(s)ω j(s)] − s[ωr(s) − ωr(u)]

us(u − s)[1 − ωr(s)ω j(s)]
, (S20)

which is the expression of the persistence probability Pr,r,0(t, t + τ) in double Laplace space.

Similarly, double Laplace transforming Eq. (S18) with respect to t → s and E → u yields

P j, j,0(s, u) =
1 − s f j(s, u)

us
, (S21)

and after inserting Eq. (S16) into Eq. (S21), it arrives at

P j, j,0(s, u) =
u − s − uωr(s)ω j(s) + sωr(s)ω j(u)

us(u − s)[1 − ωr(s)ω j(s)]
, (S22)

which is the expression of the persistence probability P j, j,0(t, t + τ) in double Laplace space.

The persistence probability can also be obtained through a second way. Take P j, j,0(t, t + τ) for

example, define P j,0(t, t + τ) to be the probability that no renewal happens between time t and

t + τ provided that the particle is located in the LW state, then the persistence probability can be

expressed as

P j, j,0(t, t + τ) = P j(t)P j,0(t, t + τ), (S23)

where P j(t) is given by Eq. (6). P j,0(t, t + τ) can be calculated by [3]

P j,0(s, u) =
1 − s f (s, u)

us
, (S24)

in which f (s, u) is given by Eq. (S14). For 0 < β < 1, it is

P j,0(s, u) ≃ usβ − suβ

us(u − s)sβ
, (S25)

and for 1 < β < 2, it is

P j,0(s, u) ≃
τβ

Tβ

uβ−1 − sβ−1

s(u − s)
. (S26)
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Inverse Laplace transforming Eqs. (S25) and (S26) yields

P j,0(t, t + τ) =
sin(πβ)
π

B
( 1
1 + τ/t

; β, 1 − β
)
, (S27)

for 0 < β < 1, and

P j,0(t, t + τ) =
τβ

Tβ

1
Γ(2 − β)

[
τ1−β − (t + τ)1−β], (S28)

for 1 < β < 2. Here

B(x; a, b) =
∫ x

o
ta−1(1 − t)b−1dt, (S29)

is the incomplete β function. After inserting Eqs. (10), (S27), and (S28) into Eq. (S23), the

persistence probability P j, j,0(t, t + τ) is obtained.

II. MSDS OF THE CTRW STATE

To calculate the EAMSD of the CTRW state, the specific value of α and β should be taken into

account, i.e., Eq. (S7). After inserting Eq. (S7) into Eq. (18), for the weak aging case ta ≪ t, we

have

⟨∆x2
ta(t)⟩CTRW ≃



σ2

Tα + Tβ
t, case 1,

σ2

Γ(1 + β)τβ
tβ, case 2,

σ2

Γ(1 + α)τα
tα, case 3,

(S30)

and for the strong aging case ta ≫ t, we have

⟨∆x2
ta(t)⟩CTRW ≃



σ2

Tα + Tβ
t, case 1,

σ2

Γ(β)τβ
tβ−1
a t, case 2,

σ2

Γ(α)τα
tα−1
a t, case 3.

(S31)

To calculate the ensemble averaged TAMSD Eq. (19), the specific value of α and β still should

be taken into account. For case 3, after inserting Eq. (S7) into Eq. (19), we have

⟨δ2
ta(∆,T )⟩CTRW =

σ2

Γ(2 + α)τα

[
(ta + T )1+α − (ta + T − ∆)1+α − (ta + ∆)1+α + t1+α

a

]
≃ σ2

Γ(1 + α)
∆

T 1−αΛα(
ta

T
), (S32)
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in which Λα( ta
T ) = (1 + ta

T )α − ( ta
T )α. For the weak aging case ta ≪ T , from Eq. (S32) we have

⟨δ2
ta(∆,T )⟩CTRW ≃

σ2

Γ(1 + α)τα

∆

T 1−α . (S33)

For the strong aging case ta ≫ T , from Eq. (S32) we have

⟨δ2
ta(∆,T )⟩CTRW ≃

σ2

Γ(α)τα
tα−1
a ∆. (S34)

The calculations on Eq. (19) for case 2 can be performed in a similar way. For case 1, from Eq.

(S7) it can be obtained that ⟨nr(ta, ta + t)⟩ = ⟨nr(0, t)⟩ = t/(Tα + Tβ), which is independent from the

aging time ta, and correspondingly,

⟨δ2
ta(∆,T )⟩CTRW =

σ2

Tα + Tβ
∆. (S35)

Based on the above calculations, we have the ensemble averaged TAMSD of the CTRW state.

For the weak aging case ta ≪ T ,

⟨δ2
ta(∆,T )⟩CTRW ≃



σ2

Tα + Tβ
∆, case 1,

σ2

Γ(1 + β)τβ
T β−1∆, case 2,

σ2

Γ(1 + α)τα
Tα−1∆, case 3,

(S36)

and for the strong aging case ta ≫ T ,

⟨δ2
ta(∆,T )⟩CTRW ≃



σ2

Tα + Tβ
∆, case 1,

σ2

Γ(β)τβ
tβ−1
a ∆, case 2,

σ2

Γ(α)τα
tα−1
a ∆, case 3.

(S37)

III. MSDS OF THE LW STATE

The scaling Green-Kubo relation is a generalized formulation that is valid for systems with

long-range or non-stationary correlations for which the standard approach is no longer valid [4, 5].

It is defined by using the velocity correlation function,

Cv(t, t + τ) = ⟨v(t)v(t + τ)⟩ ≃ Ctν−2ϕ(
τ

t
), (S38)
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in which C > 0 is a constant, ν > 1 is the exponent, and ϕ(z) is a scaling function which is limited

by two power laws,

ϕ(z) < c1z−δ1 with 2 − ν ≤ δ1 < 1 for z→ 0,

ϕ(z) < cuz−δu with δu > 1 − ν for z→ ∞, (S39)

in which c1 and cu are positive constants.

For the LW state, The EAMSD can be calculated by making use of the scaling Green-Kubo

relation,

⟨x2(t)⟩LW =

∫ t

0
dt2

∫ t

0
dt1Cv(t1, t2)

≃ 2C
∫ t

0
dt2tν−1

2

∫ ∞

0
(1 + z)−νϕ(z)dz

=
2C
ν

tν
∫ ∞

0
(1 + z)−νϕ(z)dz, (S40)

in which z = t2−t1
t1

is applied. Eq. (S40) can also be expressed as

⟨x2(t)⟩LW = 2Dνtν, (S41)

with

Dν =
C
ν

∫ ∞

0
(1 + z)−νϕ(z)dz. (S42)

After considering aging, the EAMSD becomes

⟨∆x2
ta(t)⟩LW =

⟨[
x(ta + t) − x(ta)

]2⟩
=

∫ ta+t

ta
dt2

∫ ta+t

ta
dt1Cv(t1, t2)

≃ 2C
∫ t

0
dt2

∫ t2

0
dt1(t1 + ta)ν−2ϕ(

t2 − t1

t1 + ta
). (S43)

For the weak aging case ta ≪ t, after omitting ta and introducing z = t2−t1
t1

, it is

⟨∆x2
ta(t)⟩LW ≃ 2C

∫ t

0
dt2tν−1

2

∫ ∞

0
(1 + z)−νϕ(z)dz

= 2Dνtν, (S44)

with

Dν =
C
ν

∫ ∞

0
(1 + z)−νϕ(z)dz. (S45)
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For the strong aging case ta ≫ t, Eq. (S43) can be approximately expressed as

⟨∆x2
ta(t)⟩LW ≃ 2C

∫ t

0
dt2tν−1

2

∫ t2

0
dt1tν−2

a ϕ(
t2 − t1

ta
)

≃ 2c1C
(ν − q − 1)(ν − q)

tq
atν−q, (S46)

in which ϕ(z) ≃ c1z−δ1 for small z with δ1 = 2 − ν − q, and q is the exponent of the variance of the

velocity ⟨v2(t)⟩ ∼ tq with −1 ≤ q < ν − 1.

The ensemble averaged TAMSD of the LW state Eq. (21) can be calculated in the following

way. Considering ∆ ≪ T , in fact, the leading term of the integral in Eq. (21) is contributed by the

part with ∆ ≪ t no matter what the aging time ta is. Hence, utilizing the result of ⟨∆x2
ta(t)⟩ for the

strong aging case Eq. (S46), Eq. (21) can be approximately expressed as

⟨δ2
ta(∆,T )⟩LW ≃

1
T − ∆

∫ ta+T−∆

ta

2c1C
(ν − q − 1)(ν − q)

tq∆ν−qdt

≃ 2c1C
(ν − q − 1)(ν − q)

T q∆ν−q[(1 + ta

T
)1+q − (

ta

T
)1+q]. (S47)

For the weak aging case ta ≪ T , it is

⟨δ2
ta(∆,T )⟩LW ≃

2c1C
(ν − q − 1)(ν − q)(1 + q)

T q∆ν−q, (S48)

and for the strong aging case ta ≫ T , it is

⟨δ2
ta(∆,T )⟩LW ≃

2c1C
(ν − q − 1)(ν − q)

tq
a∆
ν−q. (S49)

Eqs. (S44), (S46), (S48), and (S49) are the generic expressions of the MSDs of the LW state.

To obtain the specific results, the specific value of the power exponent α and β should be taken

into account. The detailed calculations and the specific results are presented as follows.

A. case 1, 1 < min{α, β} < 2

After inserting Eqs. (12) and (13) into Eq. (S22), the persistence probability can be approxi-

mately expressed as

P j, j,0(s, u) ≃
τβ

Tα + Tβ

uβ−1 − sβ−1

s(u − s)
, (S50)

for long time limit. Compared Eq. (S50) with Eq. (S26), we have

P j, j,0(t, t + τ) =
τβ

Tα + Tβ

1
Γ(2 − β)

[
τ1−β − (t + τ)1−β]

=
τβ

Tα + Tβ

1
Γ(2 − β) t1−β[(τ

t
)1−β − (1 +

τ

t
)1−β]. (S51)
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After inserting Eq. (S51) into Eq. (23), the velocity correlation function is

⟨v(t)v(t + τ)⟩ = v2 τβ

Tα + Tβ

1
Γ(2 − β) t1−β[(τ

t
)1−β − (1 +

τ

t
)1−β]. (S52)

Compared Eq. (S52) with the scaling Green-Kubo relation Eq. (S38), it can be seen that ν = 3−β,
C = v2 τβ

Tα+Tβ
1

Γ(2−β) , ϕ(z) = [z1−β − (1 + z)1−β], and q = 0. Besides, since ϕ(z) ≃ c1z−δ1 for small z

with δ1 = 2 − ν − q, we also have δ1 = β − 1 and c1 = 1 for small z. After substituting them into

Eqs. (S44), (S46), (S48), and (S49), we have

⟨∆x2
ta(t)⟩LW ≃


2(β − 1)τβv2

Γ(4 − β)(Tα + Tβ)
t3−β, ta ≪ t,

2τβv2

Γ(4 − β)(Tα + Tβ)
t3−β, ta ≫ t,

(S53)

and

⟨δ2
ta(∆,T )⟩LW ≃


2τβv2

Γ(4 − β)(Tα + Tβ)
∆3−β, ta ≪ T,

2τβv2

Γ(4 − β)(Tα + Tβ)
∆3−β, ta ≫ T.

(S54)

Note that, in calculating Eq. (S53), the result

Dν =
C
ν

∫ ∞

0
(1 + z)−νϕ(z)dz

=
τβv2

(Tα + Tβ)Γ(2 − β)(3 − β)

∫ ∞

0
(1 + z)β−3[z1−β − (1 + z)1−β]dz

=
τβv2(2 − β)

(Tα + Tβ)Γ(4 − β)

[ ∫ ∞

0
z1−β(1 + z)β−3dz −

∫ ∞

0
(1 + z)−2dz

]
=

(β − 1)τβv2

Γ(4 − β)(Tα + Tβ)
. (S55)

is applied.

B. case 2, 0 < β < 1 and α > β

After inserting Eqs. (12) and (13) into Eq. (S22), the persistence probability can be approxi-

mately expressed as

P j, j,0(s, u) ≃ usβ − suβ

us(u − s)sβ
, (S56)
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for long time limit. Compared Eq. (S56) with Eq. (S25), we have

P j, j,0(t, t + τ) =
sin(πβ)
π

B
( 1
1 + τ/t

; β, 1 − β
)
. (S57)

After inserting Eq. (S57) into Eq. (23), the velocity correlation function is

⟨v(t)v(t + τ)⟩ = v2 sin(πβ)
π

B
( 1
1 + τ/t

; β, 1 − β
)
. (S58)

Compared Eq. (S58) with the scaling Green-Kubo relation Eq. (S38), it can be seen that ν = 2,

C = v2sin(πβ)
π

, ϕ(z) = B
(

1
1+z ; β, 1 − β

)
, and q = 0. Besides, since ϕ(z) ≃ c1z−δ1 for small z with

δ1 = 2− ν− q, we also have δ1 = 0 and c1 = B
(

1
1+z ; β, 1− β

)
≃ π

sin(πβ) for small z. After substituting

them into Eqs. (S44), (S46), (S48), and (S49), we have

⟨∆x2
ta(t)⟩LW ≃


v2(1 − β)t2, ta ≪ t,

v2t2, ta ≫ t,
(S59)

and

⟨δ2
ta(∆,T )⟩LW ≃


v2∆2, ta ≪ T,

v2∆2, ta ≫ T.
(S60)

Note that, in calculating Eq. (S59), with introducing z′ = 1
1+z , the result

Dν =
C
ν

∫ ∞

0
(1 + z)−νϕ(z)dz

=
v2sin(πβ)

2π

∫ ∞

0
(1 + z)−2B

( 1
1 + z

; β, 1 − β
)
dz

≃ v2sin(πβ)
2π

∫ 1

0
B
(
z′; β, 1 − β

)
dz′

=
(1 − β)v2

2
, (S61)

is applied.

C. case 3, 0 < α < 1 and α < β

After inserting Eqs. (12) and (13) into Eq. (S22), it can be seen that P j, j,0(t, t + τ) = 0 for long

time limit. This result is actually related to the state occupation mechanism (see Section III of the

main text), i.e., after inserting Eqs. (12) and (13) into Eqs. (9) and (10), we have P j(t) = 0 for

long time limit, which implies that the probability of finding the particle in the LW state is 0, and

11



not surprisingly P j, j,0(t, t + τ) = 0. Hence, different from case 1 and 2, for case 3, P j, j,0(t, t + τ)

can not be directly obtained from Eq. (S22). Instead, using Eq. (S23) is a compromise way to

acquire P j, j,0(t, t + τ) at intermediate timescales. The following discussions are divided into case

3a (0 < α < β < 1) and case 3b (0 < α < 1 < β < 2).

1. case 3a, 0 < α < β < 1

After inserting Eqs. (12) and (13) into Eq. (10), we have

P j(s) ≃
τβ

τα
s−(1+α−β), (S62)

and

P j(t) =
τβ

Γ(1 + α − β)τα
tα−β, (S63)

which approaches to 0 for long time limit just as discussed above. For intermediate timescales,

inserting Eqs. (S27) and (S63) into Eq. (S23) yields

⟨v(t)v(t + τ)⟩ = v2P j(t)P j,0(t, t + τ)

= v2 τβ

Γ(1 + α − β)τα
tα−β

sin(πβ)
π

B
( 1
1 + τ/t

; β, 1 − β
)
. (S64)

Compared Eq. (S64) with the scaling Green-Kubo relation Eq. (S38), it can be seen that ν =

2+α− β, C = v2 τβ
Γ(1+α−β)τα

sin(πβ)
π

, ϕ(z) = B
(

1
1+z ; β, 1− β

)
, and q = α− β. Besides, since ϕ(z) ≃ c1z−δ1

for small z with δ1 = 2 − ν − q, we also have δ1 = 0 and c1 = B
(

1
1+z ; β, 1 − β

)
≃ π

sin(πβ) for small z.

After substituting them into Eqs. (S44), (S46), (S48), and (S49), we have

⟨∆x2
ta(t)⟩LW ≃


τβv2

Γ(3 + α − β)τα

[
1 − Γ(1 + α)
Γ(2 + α − β)Γ(β)

]
t2+α−β, ta ≪ t,

τβv2

Γ(1 + α − β)τα
tα−βa t2, ta ≫ t,

(S65)

and

⟨δ2
ta(∆,T )⟩LW ≃


τβv2

Γ(2 + α − β)τα
Tα−β∆2, ta ≪ T,

τβv2

Γ(1 + α − β)τα
tα−βa ∆

2, ta ≫ T.
(S66)
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Note that, in calculating Eq. (S65), with introducing z′ = 1
1+z , the result

Dν =
C
ν

∫ ∞

0
(1 + z)−νϕ(z)dz

=
τβv2

Γ(1 + α − β)(2 + α − β)τα
sin(πβ)
π

∫ ∞

0
(1 + z)−(2+α−β)B

( 1
1 + z

; β, 1 − β
)
dz

≃
τβv2

Γ(3 + α − β)τα
sin(πβ)
π

∫ 1

0
B
(
z′; β, 1 − β

)
dz′1+α−β

=
τβv2

Γ(3 + α − β)τα
sin(πβ)
π

[
π

sin(πβ)
−
∫ 1

0
z′α(1 − z′)−βdz′

]
=

τβv2

Γ(3 + α − β)τα

[
1 − Γ(1 + α)
Γ(2 + α − β)Γ(β)

]
(S67)

is applied. Besides, considering 0 < α < β < 1, if α is treated as slightly smaller than β, Eq. (S67)

can be approximately expressed as Dν ≃ τβv2

Γ(3+α−β)τα (1 − β).

2. case 3b, 0 < α < 1 < β < 2

After inserting Eqs. (12) and (13) into Eq. (10), we have

P j(s) ≃
Tβ
τα

s−α, (S68)

and

P j(t) =
Tβ
Γ(α)τα

tα−1, (S69)

which still approaches to 0 for long time limit. For intermediate timescales, inserting Eqs. (S28)

and (S69) into Eq. (S23) yields

⟨v(t)v(t + τ)⟩ = v2P j(t)P j,0(t, t + τ)

= v2 Tβ
Γ(α)τα

tα−1 τβ

Tβ

1
Γ(2 − β)

[
τ1−β − (t + τ)1−β]

=
τβv2

Γ(α)Γ(2 − β)τα
tα−β
[(τ

t

)1−β
−
(
1 +
τ

t

)1−β]
. (S70)

Compared Eq. (S70) with the scaling Green-Kubo relation Eq. (S38), it can be seen that ν =

2 + α − β, C = τβv2

Γ(α)Γ(2−β)τα , ϕ(z) = [z1−β − (1 + z)1−β], and q = α − 1. Besides, since ϕ(z) ≃ c1z−δ1

for small z with δ1 = 2 − ν − q, we also have δ1 = β − 1 and c1 = 1 for small z. After substituting

them into Eqs. (S44), (S46), (S48), and (S49), we have

⟨∆x2
ta(t)⟩LW ≃


2τβv2

τα

[ 1
Γ(3 + α − β) −

1
Γ(1 + α)Γ(2 − β)

]
t2+α−β, ta ≪ t,

2τβv2

Γ(α)Γ(4 − β)τα
tα−1
a t3−β, ta ≫ t,

(S71)
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and

⟨δ2
ta(∆,T )⟩LW ≃


2τβv2

Γ(α + 1)Γ(4 − β)τα
Tα−1∆3−β, ta ≪ T,

2τβv2

Γ(α)Γ(4 − β)τα
tα−1
a ∆

3−β, ta ≫ T.
(S72)

Note that, in calculating Eq. (S71), with introducing z′ = 1
1+z , the result

Dν =
C
ν

∫ ∞

0
(1 + z)−νϕ(z)dz

=
τβv2

(2 + α − β)Γ(α)Γ(2 − β)τα

∫ ∞

0
(1 + z)−(2+α−β)[z1−β − (1 + z)1−β]dz

=
τβv2

(2 + α − β)Γ(α)Γ(2 − β)τα

[
Γ(α)Γ(2 − β)
Γ(2 + α − β) −

1
α

]
=
τβv2

τα

[ 1
Γ(3 + α − β) −

1
Γ(1 + α)Γ(2 − β)

]
(S73)

is applied.
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