1 Supplementary figure

Fig. S1 Wavelength variation trend of pedal waves along radial coordinate r while collecting varyingsized particles.

Fig. S2 (A) Pencil of $\xi_{-} \bar{d}$ curves and orthogonal trajectories. (B)-(C) Relationship between \bar{d} and φ in varying slopes k of orthogonal trajectories.

Fig. S3 Probability of particle collection satisfies the exponential distribution. The probability $P(\bar{d})$ is set to 1% at $\bar{d}=1.0$, which means an imaginarily large particle located in a diameter equivalent to the funnel radius cannot to collect by the snail.

Fig. S4 (A) Natural feeding behavior of a water snail that uses its foot to collect particles floating on the water surface. (B)-(C) SEM images of the snail foot surface. The cilia are densely distributed on textured surface of snail foot. (D) Samples for preparing foot muscle slices. (E)-(F) Distribution of foot muscles of the snail. Thin longitudinal section of the muscle stained with masson dye solution, showing transverse muscles (TM), oblique muscles (OM), longitudinal muscles and connective tissue (CT) surrounding the muscles.

Fig. S5 Transport time and energy consumption when transporting different particles by varying
amplitudes. The dotted line is used to compare the transport time and energy consumption at a specific amplitude, in which the colored lines indicate that varying amplitudes are used to transport different particles and the black line indicate that a specific amplitude is used to transport.

2 Supplemental information

3 S1. Particle velocity

4 Considering a two-dimensional situation, in the frame fixed to the foot surface wave, 5 applying the lubrication approximation to the incompressible Navier-Stokes equation, 6 we have

$$
\frac{\partial p}{\partial r}=\mu \frac{\partial^{2} u_{r}}{\partial z^{2}}, \frac{\partial p}{\partial z}=0
$$

7 in which ${ }^{u_{r}}$ is the component of velocity along the $r_{\text {-direction, and }} p$ is the pressure.
8 First, we rationalize the flow of mucus covering the foot surface. The boundary 9 conditions for Equation S1 can be expressed as $u_{r}=-V_{w}$ at $z=f$, as well as $\partial u_{r} / \partial z=0$ 10 at $z=h$, where f and h are the vertical position of the foot surface and the gas-liquid

13 the boundary conditions, we arrive at the velocity of the mucus flow as

$$
u_{r}=-V_{w}-\frac{1 d p}{2 \mu d r}\left[(h-f)^{2}-(h-z)^{2}\right]
$$

Equation S2

14 Further, integrating the velocity with respect to z, we get the rate of volume flow at
15 each cross-section as

$$
q=\int_{f}^{h} u_{r} d z=-V_{w}(h-f)+\frac{(h-f)^{3} d p}{3 \mu d r^{\prime}}
$$

16 which is a time-independent constant because the mucus thickness is time-invariant in
17 the wave frame.
18 When the free surface remains approximately flat and undisturbed, the mucus is
19 validated to be actuated by the pedal waves, rather than the hydrostatic pressure or 20 surface tension ${ }^{1}$. In other words, the location of the free surface can be approximated

21 as a critical constant h_{0}. We may derive a relationship of $h \neq h_{0}$, otherwise the pressure 22 would be uniform and there would be no flow on the no-slip surface. There might have 23 two ultimate states to the free surface location. For the first state where the capillary 24 number $C a$ tends to infinity, the interface shape exactly conforms to the wavy shape of 25 the foot. In the other state with $C a \approx 0$, the mucus-air interface becomes flat ${ }^{2}$. To get an 26 approximately flat free surface, the change in mucus thickness is required to satisfy $27\left|h-h_{0}\right| \ll f_{0}$. According to the momentum equations in the r-direction, viscous stresses 28 must be balanced by the pressure gradient. By balancing the terms and rearranging, an 29 approximately flat free surface is given by (3.9) of ${ }^{1}$:

$$
\frac{\rho g\left(h_{0}-f_{0}\right)^{2}}{\sigma} \gg \frac{\lambda}{f_{0}} C a, C a \equiv \frac{\mu U}{\sigma} \ll \frac{\left(h_{0}-f_{0}\right)^{2} f_{0}}{\lambda^{3}} .
$$

30 We consider mucus has the same density and surface tension as water, while being 100
31 times in viscosity ${ }^{1}$. By introducing the numbers of the mucus thickness $H=1 \mathrm{~mm}$, the
32 amplitude $f_{0}=0.1 \mathrm{~mm}$, and the wavelength $\lambda=0.5 \mathrm{~mm}$, we can extend Equation S4 33 into $C a \equiv 10^{-3} \ll 0.4$ that satisfies the flat free surface approximation. So, in the 34 following derivations, h can be replaced by h_{0}.

35 The rate of volume flow at each cross section in the laboratory frame is $36 Q=q+v_{w}\left(h_{0}-f\right)$, then the volume flow averaged by total duration at each cross section

37 can be calculated by integrating over the period: $Q^{\text {mean }}=\int_{0}^{T} Q d t / T=q+V_{w} h_{0}$. 38 Substituting $Q^{\text {mean }}$ into Equation S3, and introducing the dimensionless amplitude $\varphi=f_{0} / h_{0}$ and dimensionless volume flow $\theta=Q^{\text {mean }} /\left(V_{w} h_{0}\right)$, we get
$\frac{h_{0}^{2}}{\mu V_{w} \lambda} d p=\frac{3 \varphi\left(\theta-\frac{f}{f_{0}}\right)}{\lambda\left(\varphi \frac{f}{f_{0}}-1\right)^{3}} d r$.
40 Actually, dimensionless amplitude φ is a small quantity. We rewrite right side of

41 Equation S5 by Taylor expansion, keeping it to the order of φ^{3} :

$$
\frac{h_{0}^{2}}{\mu V_{w} \lambda} d p=\frac{1}{\lambda}\left[3 \varphi\left(\frac{f}{f_{0}}-\theta\right)+9 \varphi^{2} \frac{f}{f_{0}}\left(\frac{f}{f_{0}}-\theta\right)+18 \varphi^{3}\left(\frac{f}{f_{0}}\right)^{2}\left(\frac{f}{f_{0}}-\theta\right)\right] d r, \quad \text { Equation S6 }
$$

42 Integrating both sides of the equation simultaneously, we get

$$
\frac{h_{0}^{2}}{\mu V_{w} \lambda} \Delta p_{\lambda}=-3 \theta \varphi+\frac{9}{2} \varphi^{2}-9 \theta \varphi^{3},
$$

Equation S7

43 where Δp_{λ} is the pressure rise within one wavelength. Considering the case of $\Delta p_{\lambda}=0$,
44 Equation S 7 can be transformed into

$$
\theta=\frac{3 \varphi}{2\left(3 \varphi^{2}+1\right)} .
$$

Equation S8

45 Next, we rationalize the flow of mucus around the particle. We consider that an 46 oblate cylindrical floating particle moves radially along the foot without direct contact 47 with the foot. Assuming that the particle is moving with velocity V_{s}, the boundary 48 conditions for Equation S 1 can be expressed as $u_{r}=-V_{w}$ at $z=f$, as well as
$49 u_{r}=V_{s}-V_{w}$ at ${ }^{z}=h_{s}$, in which h_{s} is the position of the lower surface of the particle. Since 50 we consider the shape of the particle as an oblate cylinder, the lower surface of the 51 particle is flat and h_{s} keeps constant in the static equilibrium. Consistent with the 52 derivation of the flow of mucus covering the foot surface, we arrive at the velocity of 53 the local flow in the area between the lower surface of the particle and the surface of 54 the foot as

$$
u_{r}=-V_{w}+\frac{z-f}{h_{s}-f} V_{s}+\frac{1 d p}{2 \mu d r}\left(z-h_{s}\right)(z-f) .
$$

55 Further, the rate of volume flow at each cross-section can be expressed as

$$
q_{s}=-V_{w}\left(h_{s}-f\right)+V_{s} h_{s}-\frac{\left(h_{s}-f\right)^{3} d p}{12 \mu d r}
$$

56 which can be averaged by total duration in the laboratory frame is $Q_{s}^{m e a n}=q_{s}+V_{w} h_{s}$.
57 Substituting $Q_{s}^{\text {mean }}$ into Equation S10, then introducing the dimensionless amplitude
$\varphi_{s}=f_{0} / h_{s}$ and dimensionless volume flow $\theta_{s}=Q_{s}^{\text {mean }} /\left(V_{w} h_{s}\right)$ and dimensionless velocity $59 \chi=V_{s} / V_{w}$ into Equation S 10 , we get

$$
\frac{h_{s}^{2}}{\mu V_{w} \lambda} d p=\frac{12\left(\theta_{s}-\varphi_{s} \frac{f}{f_{0}}\right)+6\left(\varphi_{s} \frac{f}{f_{0}}-1\right) \chi}{\lambda\left(\varphi_{s} \frac{f}{f_{0}}-1\right)^{3}} d r
$$

Equation S11

60 We rewrite right side of Equation S11 by Taylor expansion, keeping it to the order of
$61 \varphi_{s}^{3}$:

$$
\begin{aligned}
& \frac{h_{s}^{2}}{\mu V_{w} \lambda} d p \\
&=\frac{1}{\lambda}\left[6 \chi+12 \varphi_{s}\left(\frac{f}{f_{0}} \chi+\frac{f}{f_{0}}-\theta_{s}\right.\right.
\end{aligned}
$$

Equation S12

62 Integrating both sides of the equation, we get

$$
\frac{h_{s}^{2}}{\mu V_{w} \lambda} \Delta p_{\lambda}=6 \chi-12 \theta_{s} \varphi_{s}+(9 \chi+18) \varphi_{s}^{2}-36 \theta_{s} \varphi_{s^{\prime}}^{3}
$$

63 Considering the case of $\Delta p_{\lambda}=0$, Equation S13 can be transformed into

$$
\theta_{s}=\frac{6 \varphi_{s}^{2}+\left(3 \varphi_{s}^{2}+2\right) \chi}{4 \varphi_{s}\left(3 \varphi_{s}^{2}+1\right)}
$$

Equation S14

64 In order to match the particle local flow with the global flow, we apply the results 65 above to the axisymmetric configuration of the biological funnel. Extending from two-

66 dimensional case to three-dimensional one, the width-integrated flux of whole foot flow $67 \Phi=2 \pi r Q^{\text {mean }}$ may be equal to the width-integrated flux of particle local flow $68 \Phi_{s}=d Q_{s}^{\text {mean }}$. Due to the flow loss of mucus passing through particles in tangential 69 directions, the matching of the two flows should be written as $\Phi_{s}=(1-K) \Phi$ where
$70 K$ is a leakiness coefficient K to measure the volume flow loss of mucus between the 71 pedal wave and the lower surface of the particle in other non-radial directions.

72 Expressing the matching of the flow as $2 \pi r(1-K) \theta=d \theta_{s}$ in dimensionless numbers 73 and substituting Equation S8 and Equation S14 into it, we rearrange it to get

$$
\chi=\frac{12 \varphi^{2} \pi\left(3 \varphi^{2}+\xi^{2}\right)}{\left(3 \varphi^{2}+1\right)\left(3 \varphi^{2}+2 \xi^{2}\right) \xi d}(1-K) r-\frac{6 \varphi^{2}}{3 \varphi^{2}+2 \xi^{2}} . \quad \text { Equation S15 }
$$

74 where $\xi=\varphi / \varphi_{s}=h_{s} / h_{0}$ is a dimensionless number characterizing the relative magnitudes 75 of h_{s} and h_{0}. We introduce two dimensionless numbers $\bar{r}=r / r_{0}$ and $\bar{d}=d / r_{0}$, which radial position on the foot surface of the particle can be expressed as

$$
\chi=\frac{12 \varphi^{2} \pi\left(3 \varphi^{2}+\xi^{2}\right)}{\left(3 \varphi^{2}+1\right)\left(3 \varphi^{2}+2 \xi^{2}\right) \xi \bar{d}}(1-K) \bar{r}-\frac{6 \varphi^{2}}{3 \varphi^{2}+2 \xi^{2}} . \quad \text { Equation S16 }
$$

Equation S12 as follows

$$
\begin{aligned}
& \frac{h_{0}^{2}}{\mu V_{w^{2}} \lambda} d p \\
& \quad=\frac{1}{\lambda \lambda \eta^{2}}\left[6 \chi+12 \frac{\varphi}{\xi}\left(\frac{f}{f_{0}} \chi+\frac{f}{f_{0}}-\quad\right. \text { Equation S17 }\right. \\
& \quad d r .
\end{aligned}
$$

83 Substituting Equation S16 into Equation S17 and integrating both sides simultaneously,

S2. The supporting force for mucus

To calculate the supporting force provided by the mucus to the particles, we rewrite we can get the pressure p. To eliminate the effect of time, we calculate the timeaveraged pressure distribution of the water film under the particle according to $p^{\text {mean }}=\int_{0}^{T} p d t / T$ and arrive at dimensionless time-averaged pressure as

$$
\frac{h_{0}^{2}}{\mu V_{w} \lambda} p^{\text {mean }}=\frac{18 \pi K \varphi^{2}\left(3 \varphi^{2}+\xi^{2}\right)}{\eta^{5}\left(3 \varphi^{2}+1\right) d \lambda}\left(r_{0}^{2}-r^{2}\right), \quad \text { Equation S18 }
$$

87 in which we confirmed that the constant term due to the integration by setting the 88 boundary condition $\left.p^{p^{\text {mean }}}\right|_{r=r_{0}}=0$ and r_{0} is the position of the snail foot edge. For 89 simplification, in the following text, we rewrite $p^{\text {mean }}$ as p. Using \bar{r} and \bar{d} to make all 90 the variables in Equation S18 dimensionless, the dimensionless pressure acting on the

91 lower surface of the particle along the radial direction of the foot can be expressed as

$$
\frac{h_{0}^{2}}{\mu V_{w} r_{0}} p=\frac{18 \pi K \varphi^{2}\left(3 \varphi^{2}+\xi^{2}\right)}{\xi^{5}\left(3 \varphi^{2}+1\right) \bar{d}}\left(1-\bar{r}^{2}\right) . \quad \text { Equation S19 }
$$

92 S3. Numerical solution of eqn (5)

 parameter B constant at $B=0.4$ and rewrite Equation S 20 as$$
\bar{d}=A \varphi^{0.4} . \quad \text { Equation S21 }
$$

103 According to results of Equation S21 fitting (Fig. S2B), we consider A to be a function 104 of k. To understand the varying in slopes of the orthogonal trajectories, we fit $A(k)$ in a 105 form of a power function (Fig. S2C), written as

$$
A(k)=m k^{n} . \quad \text { Equation } \mathrm{S} 22
$$

106 Substitute the fitting result into Equation S21, the relationship between \bar{d} and φ can be
The numerical results show that all $\xi_{-} \bar{d}$ curves exhibit inverse proportional principles with varying φ. Examining the slope variation of each curve along the coordinate \bar{d}, we notice that the orthogonal trajectories of $\xi-\bar{d}$ curve family are the lines through the origin (Fig. S2A). We intend to record the intersections of the curves with orthogonal trajectories in varying slopes k and express the relationship between \bar{d} and φ at these points with an approximate equation.

First, we assume that \bar{d} is proportional to the power of φ, which can be expressed as

$$
\bar{d}=A \varphi^{B} . \quad \text { Equation S20 }
$$

Fitting ${ }^{\bar{d}}$ with Equation S20 in varying ${ }^{k}$ and comparing the fitting results (Tab. S1), we notice that the parameter A is sensitive to k, while B is not. Therefore, we keep the expressed as

$$
\bar{d}=0.67 k^{0.58} \cdot \varphi^{0.4} . \quad \text { Equation S23 }
$$

Tab. S1 Results of Equation S20 fitting

k	0.5	1	2	5	10
A	0.174	0.263	0.451	0.675	1.007
$\Delta A / \Delta k$	$/$	17.8%	18.5%	11.1%	8.8%
B	0.397	0.396	0.394	0.391	0.388
$\Delta B / \Delta k$	$/$	0.2%	0.2%	0.1%	0.1%
R^{2}	0.99999	0.99999	0.99998	0.99996	0.99995

108 S4. Transport time and mass intake rate
109 Since $\chi=-d r / d t$ where duration time t is dimensionless to $\bar{t}=t \cdot V_{w} / r_{0}$ and the 110 negative sign indicates that the particle is moving from the edge of the foot to the center

111 of the foot, we rewrite Equation S16 as

$$
-\frac{d \bar{r}}{d \bar{t}}=C_{1} \bar{r}+C_{2}, \quad \text { Equation S24 }
$$

112 where parameters C_{1} and C_{2} can be expressed as

$$
\begin{gathered}
C_{1}=\frac{12 \phi^{2} \pi\left(3 \phi^{2}+\xi^{2}\right)}{\left(3 \phi^{2}+1\right)\left(3 \phi^{2}+2 \xi^{2}\right) \xi \bar{d}}(1-K), \\
C_{2}=-\frac{6 \phi^{2}}{3 \phi^{2}+2 \xi^{2}} .
\end{gathered} \quad \text { Equation S25 }
$$

113 We consider that the moment when the particles are transported inward from the edge
114 of the pedal wave is $\bar{t}=0$, namely the initial condition of Equation S24 is $\left.\bar{r}\right|_{\bar{t}}=0=1$
115 Solving the equation with this initial condition, we arrive at the explicit relationship
116 between \bar{r} and \bar{t} as

$$
\bar{r}=-\frac{C_{2}}{C_{1}}+e^{-C_{1} \bar{t}}\left(1+\frac{C_{2}}{C_{1}}\right) . \quad \text { Equation S26 }
$$

117 Assuming that the particle is transported to the position $\bar{r}=\bar{r}_{t}$ and just leave the flat 118 portion of the funnel at ${ }^{\bar{t}}=\bar{T}_{t}$, we can rearrange Equation S26 as

$$
\bar{T}_{t}=-\frac{1}{C_{1}} \ln \left(\frac{\bar{r}_{t}+\frac{C_{2}}{C_{1}}}{1+\frac{C_{2}}{C_{1}}}\right), \quad \text { Equation S27 }
$$

119 where \bar{T}_{t} is the dimensionless form of the particle transport time T_{t}.

120

vibration of the foot muscles can be expressed as

$$
\varepsilon \sim \frac{32 \pi^{2} H^{2}}{16^{2}+D^{2}}, \quad \text { Equation S28 }
$$ connections between ϕ and D as

$$
\varphi \frac{f}{f_{0}} \sim D \frac{16 \cos \left(\frac{2 \pi}{\lambda} r\right)+D \sin \left(\frac{2 \pi}{\lambda} r\right)}{16^{2}+D^{2}}
$$

dimensionless power can be expressed as

$$
\varepsilon \sim \varphi^{2} . \quad \text { Equation S30 }
$$

131 Further, we can calculate the energy consumption of the snail during a transport by $132 \bar{E}=\varepsilon \cdot \bar{T}_{t}$ where \bar{E} is the dimensionless energy consumption. We compared the changes

S5. Energy cost of changing waveforms

To quantify energy cost during the snail altering the waveform, we model the snail foot composed of a linear elastic material. For steady waves, in the case of small deformation, the dimensionless power that the snail output to maintain the forced
in which H and D are dimensionless parameters identifying the characteristic strength of forced vibration and the stiffness of the foot muscles, respectively ${ }^{3}$. According to previous models that specify the wall displacement in a sinusoidal form ${ }^{4-6}$, we have the

Equation S29

Integrating both sides of the equation simultaneously, we get $\varphi \sim D$. Therefore, the in dimensionless transport time and dimensionless energy consumption when transporting the particles in different sizes by different amplitudes (Fig. S5). As the amplitude increases, the transport time for a single particle will decrease, but the energy

136 consumption will increase, which requires the snail to balance time cost and energy 137 cost. Taking $\bar{d}=0.05$ as an example, compared with $\varphi=0.03$, using the amplitude in $138 \varphi=0.0375$ can only help the snail save 15.4% of the energy but the snail has to spend 13929.3% more time to transport the particle.

140 References

141 1. S. Joo, S. Jung, S. Lee, R. H. Cowie and D. Takagi, Journal of the Royal Society 142 Interface, 2020, 17, 20200139.
143 2. S. Lee, J. W. Bush, A. Hosoi and E. Lauga, Physics of Fluids, 2008, 20, 082106.
144 3. D. Takagi and N. Balmforth, Journal of fluid mechanics, 2011, 672, 219-244.
145 4. Y. Fung and C. Yih, 1968.
146 5. A. H. Shapiro, M. Y. Jaffrin and S. L. Weinberg, Journal of fluid mechanics, 1969, 37, 799-825.
6. T.-F. Zien and S. Ostrach, Journal of Biomechanics, 1970, 3, 63-75.

