Supplementary Information

Malleable and self-healing rubbers covalently crosslinked by

reversible boronic ester bonds

Jiahao Zhang,¹ Liming Cao,^{2, *} Yukun Chen^{1, *}

1 Lab of Advanced Elastomer, School of Mechanical and Automotive Engineering, South China

University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China.

2 College of Food Science, South China Agricultural University, Guangzhou 510642, China.

* Corresponding Author: Yukun Chen (cyk@scut.edu.cn); Liming Cao (lmcao@scau.edu.cn)

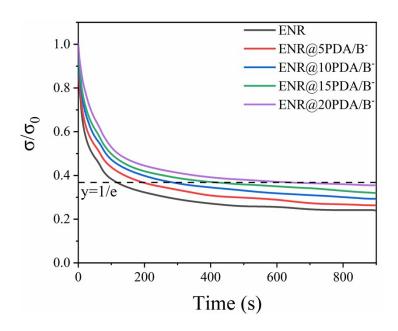


Figure S1 Stress relaxation curves of ENR and the crosslinked rubbers at 100°C.

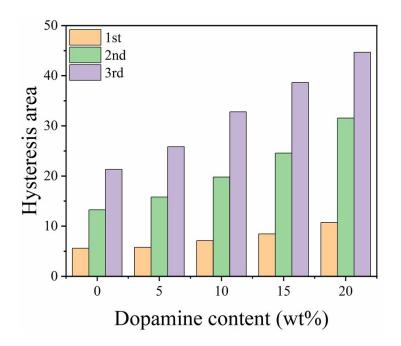


Figure S2 Hysteresis areas of ENR and the crosslinked rubbers.

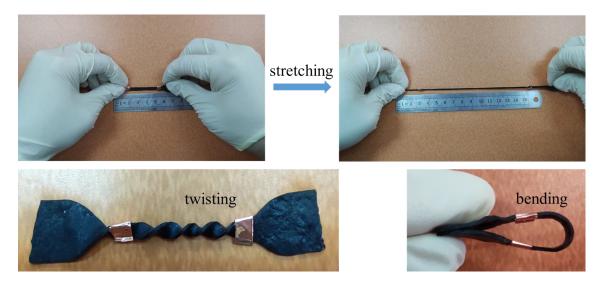


Figure S3 Photographs of the healed ENR@10PDA/B⁻ under external force.

Equilibrium swelling experiment

$$V_{e} = -\frac{1}{V} \left[\frac{\ln(1 - V_{r}) + V_{r} + \chi V_{r}^{2}}{V_{r}^{\frac{1}{3}} - \frac{V_{r}}{2}} \right]$$
(1)

$$V_r = \frac{\frac{m_2}{\rho_1}}{\frac{m_2}{\rho_1} + \frac{m_1 - m_2}{\rho_2}}$$
(2)

Swelling ratio =
$$\frac{m_1 - m_2}{m_2} \times 100\%$$
 (3)

- V_{e} ____The cross-link density of ENR, mol/cm³
- V_r ——The volume fraction of rubber in the swollen sample
- χ ——The Flory–Huggins polymer–solvent interaction term (0.393)
- *V*——The molar volume of toluene $(106.2 \text{ cm}^3/\text{mol})$
- ρ_1 _____The densities of rubber (0.94g/cm³)
- ρ_2 _____The densities of toluene (0.865g/cm³)
- m_1 _____The mass of the swollen sample
- m_2 ——The mass of the dried rubber

Logarithmic form of Arrhenius formula

$$ln\left(\tau\right) = ln\left(\tau_{0}\right) + \frac{E_{a}}{RT}$$

- τ ——The relaxation time of the crosslinked rubber (s)
- τ_0 —The characteristic relaxation time at infinite temperature
- R ——The universal gas constant (8.314 J/(mol·K))
- *T* ——The testing temperature (Thermodynamic temperature, K)