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1 The magnetic field of a uniformly magnetized ellipsoid

The magnetic potential outside the ellipsoidal particle (£ > 0) generated by the magnetization along the x—axis of the

particle resultst
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Rearranging it, results
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The magnetic field at position £ outside the particle results equal to the negative gradient of the magnetic potential. The
components of the magnetic field due to the magnetization along the x—direction results
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Similarly, the magnetic potentials due to the magnetization along the y and z particle axes result in a similar functionality
to Eq. (2). The magnetic field components due to the magnetization along the y—direction results
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The magnetic field components due to the magnetization along the z—direction results,
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Therefore, the external field to the particle due to a magnetization M = (M, My, M.) in an arbitrary direction in the particle

frame results
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Thus, the field outside the ellipsoidal particle with an arbitrarily oriented magnetization M can be expressed as
(15)
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where ¥ is a tensor, which is equivalent to the Green tensor in ellipsoidal coordinates with components
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where §;; represents the identity tensor and L, is a scalar function. Additionally, —/~— = — T oo
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Fig. S 1 Excluded volume of (a)-(f) monodisperse ellipsoids and (g)-(I) binary ellipsoid-sphere systems with different orientations
of particle J.

Notes and references
1 J. A. Stratton, Electromagnetic Theory, McGraw-Hill Book Company, Inc., New York, 1941, p. 615.
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Fig. S 2 Dipolar interaction energy using point-dipole model between two magnetized ellipsoids (B; = 10) with different
orientations and aspect ratios, (al)-(gl) ry/rm =1, (32) - (g2) 5, and (a3) - (g3) 5 and 1. In both particles, the magnetization
is aligned along the x—axis of the particle. The white area represents the excluded volume between particles at the corresponding
orientation.
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Fig. S 3 Dipolar interaction energy between two magnetized spheres ry/r,, =1 as a function of dipole-dipole interaction
parameter B, and dipole-field interaction parameter ay. In both particles, the magnetization is aligned along the x—axis of the
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particle. The field is along the x—axis in the laboratory space.
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Fig. S 4 Normalized probability between two magnetized spheres r,/r,, = | as a function of dipole-dipole interaction parameter
Bs and dipole-field interaction parameter o. In both particles, the magnetization is aligned along the x—axis of the particle.

The field is along the x—axis in the laboratory space.
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Fig. S 5 Dipolar interaction energy between two magnetized ellipsoids r,/r, =5 as a function of dipole-dipole interaction
parameter B, and dipole-field interaction parameter a;. In both particles, the magnetization is aligned along the x—axis of the
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particle. The field is along the x—axis in the laboratory space.
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Fig. S 6 Normalized probability between two magnetized ellipsoids r,/r,, =5 as a function of dipole-dipole interaction parameter

Bs and dipole-field interaction parameter .

The field is along the x—axis in the laboratory space.
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In both particles, the magnetization is aligned along the x—axis of the particle.
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Fig. S 7 Dipolar interaction energy between a magnetized ellipsoid r,/r,, =5 and a magnetized sphere r,/r,, = 1 as a function of
dipole-dipole interaction parameter B, and dipole-field interaction parameter . In both particles, the magnetization is aligned
along the x—axis of the particle. The field is along the x—axis in the laboratory space.
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Fig. S 8 Normalized probability between a magnetized ellipsoid r,/r,, =5 and a magnetized sphere r,/r,, = 1 as a function of
dipole-dipole interaction parameter B, and dipole-field interaction parameter ;. In both particles, the magnetization is aligned
along the x—axis of the particle. The field is along the x—axis in the laboratory space.
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Fig. S 9 Snapshots of MC simulations for suspensions composed of spheres (r,/r,, = 1) in a two-dimensional confinement as a
function of o and fBs. The colorbar is as shown in Fig. 3.
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Fig. S 10 Pair distribution function for suspensions composed of spheres (ry/r, = 1) in a two-dimensional confinement as a
function of o and ..
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Fig. S 11 Snapshots of MC simulations for suspensions composed of ellipsoids (ry/r,, =5) in a two-dimensional confinement
as a function of oy and f;. The colorbar is as shown in Fig. 3.
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Fig. S 12 Pair distribution function for suspensions composed of ellipsoids (ry/r, = 5) in a two-dimensional confinement as a
function of o and ..



Fig. S 13 Snapshots of MC simulations for suspensions composed of a mixture of spheres (r/r, = 1) and ellipsoids (ry/rm =5)
in a two-dimensional confinement as a function of & and B;. The colorbar is as shown in Fig. 3.
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Fig. S 14 Pair distribution function for suspensions composed of a mixture of spheres (ry/r,, = 1) and ellipsoids (ry/r, =5) in
a two-dimensional confinement as a function of & and f;.
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