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1 The magnetic field of a uniformly magnetized ellipsoid

The magnetic potential outside the ellipsoidal particle (ξ > 0) generated by the magnetization along the x−axis of the
particle results1
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Rearranging it, results
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The magnetic field at position ξ outside the particle results equal to the negative gradient of the magnetic potential. The
components of the magnetic field due to the magnetization along the x−direction results
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Similarly, the magnetic potentials due to the magnetization along the y and z particle axes result in a similar functionality
to Eq. (2). The magnetic field components due to the magnetization along the y−direction results

Hx =
rxryrz

2
y

∂Lry(ξ )

∂x
My, (6)

Hy =
rxryrz

2
(
Lry (ξ )−Lry (∞)

)
My +

rxryrz

2
y

∂Lry(ξ )

∂y
My, (7)

Hz =
rxryrz

2
y

∂Lry(ξ )

∂ z
My. (8)

The magnetic field components due to the magnetization along the z−direction results,
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Therefore, the external field to the particle due to a magnetization M = (Mx,My,Mz) in an arbitrary direction in the particle
frame results
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Thus, the field outside the ellipsoidal particle with an arbitrarily oriented magnetization M can be expressed as
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where G is a tensor, which is equivalent to the Green tensor in ellipsoidal coordinates with components
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where δi j represents the identity tensor and Lr j is a scalar function. Additionally,
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Fig. S 1 Excluded volume of (a)-(f) monodisperse ellipsoids and (g)-(l) binary ellipsoid-sphere systems with different orientations
of particle J.

Notes and references
1 J. A. Stratton, Electromagnetic Theory, McGraw-Hill Book Company, Inc., New York, 1941, p. 615.
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Fig. S 2 Dipolar interaction energy using point-dipole model between two magnetized ellipsoids (βs = 10) with different
orientations and aspect ratios, (a1)-(g1) rx/rm = 1, (a2) - (g2) 5, and (a3) - (g3) 5 and 1. In both particles, the magnetization
is aligned along the x−axis of the particle. The white area represents the excluded volume between particles at the corresponding
orientation.
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Fig. S 3 Dipolar interaction energy between two magnetized spheres rx/rm = 1 as a function of dipole-dipole interaction
parameter βs and dipole-field interaction parameter αs. In both particles, the magnetization is aligned along the x−axis of the
particle. The field is along the x−axis in the laboratory space.

Fig. S 4 Normalized probability between two magnetized spheres rx/rm = 1 as a function of dipole-dipole interaction parameter
βs and dipole-field interaction parameter αs. In both particles, the magnetization is aligned along the x−axis of the particle.
The field is along the x−axis in the laboratory space.
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Fig. S 5 Dipolar interaction energy between two magnetized ellipsoids rx/rm = 5 as a function of dipole-dipole interaction
parameter βs and dipole-field interaction parameter αs. In both particles, the magnetization is aligned along the x−axis of the
particle. The field is along the x−axis in the laboratory space.

Fig. S 6 Normalized probability between two magnetized ellipsoids rx/rm = 5 as a function of dipole-dipole interaction parameter
βs and dipole-field interaction parameter αs. In both particles, the magnetization is aligned along the x−axis of the particle.
The field is along the x−axis in the laboratory space.
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Fig. S 7 Dipolar interaction energy between a magnetized ellipsoid rx/rm = 5 and a magnetized sphere rx/rm = 1 as a function of
dipole-dipole interaction parameter βs and dipole-field interaction parameter αs. In both particles, the magnetization is aligned
along the x−axis of the particle. The field is along the x−axis in the laboratory space.

Fig. S 8 Normalized probability between a magnetized ellipsoid rx/rm = 5 and a magnetized sphere rx/rm = 1 as a function of
dipole-dipole interaction parameter βs and dipole-field interaction parameter αs. In both particles, the magnetization is aligned
along the x−axis of the particle. The field is along the x−axis in the laboratory space.
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Fig. S 9 Snapshots of MC simulations for suspensions composed of spheres (rx/rm = 1) in a two-dimensional confinement as a
function of αs and βs. The colorbar is as shown in Fig. 3.

Fig. S 10 Pair distribution function for suspensions composed of spheres (rx/rm = 1) in a two-dimensional confinement as a
function of αs and βs..
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Fig. S 11 Snapshots of MC simulations for suspensions composed of ellipsoids (rx/rm = 5) in a two-dimensional confinement
as a function of αs and βs. The colorbar is as shown in Fig. 3.

Fig. S 12 Pair distribution function for suspensions composed of ellipsoids (rx/rm = 5) in a two-dimensional confinement as a
function of αs and βs..
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Fig. S 13 Snapshots of MC simulations for suspensions composed of a mixture of spheres (rx/rm = 1) and ellipsoids (rx/rm = 5)
in a two-dimensional confinement as a function of αs and βs. The colorbar is as shown in Fig. 3.

Fig. S 14 Pair distribution function for suspensions composed of a mixture of spheres (rx/rm = 1) and ellipsoids (rx/rm = 5) in
a two-dimensional confinement as a function of αs and βs.
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