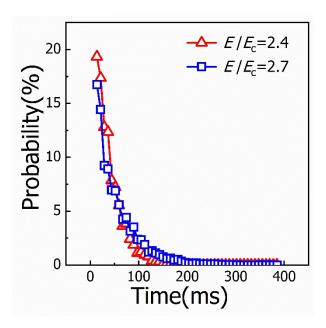

Tunable Collective Dynamics of Ellipsoidal Quincke Particles

Yu Chen, a,b Lei Wang, a,b* Tian Hui Zhang a,b*


^a Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, P. R. China ^bSchool of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China

Supplementary Materials

In the unstable spinning state, the tilting of spinning axis leads to the procession of ellipsoidal Quincke particles. Therefore, the speed v is a result of the combination of spinning and procession as shown in SFig.1. In the absence of procession, the speed v is linearly dependent on the angular speed v of spinning. This linear dependence results in the linear relation between v^2 and $(E/E_c)^2$. However, the tilting and the procession distort the relation between v and v giving rise to the deviation from the linear dependence between v^2 and v and

SFig. 1 Motion of ellipsoidal Quincke rollers in the unstable spinning state.

SFig. 2 Reorientation time of ellipsoidal Quincke particles in cluster phases. The aspect ratio k is 2.0. The global area fraction is 0.05.