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I. EXPRESSIONS FOR THE FREE ENERGY
AND HYDRODYNAMIC EQUATIONS OF

MOTION

Rod-like particles can not only be advected by the
fluid, but also rotate in response to flow gradients. This
behaviour is accounted for by the co-rotational term [1]
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where Ẽij = Eij − δijEkk/3 is the traceless part of the
strain rate tensor Eij = (∂jui+∂iuj)/2 and Ωij = (∂jui−
∂iuj)/2 is the antisymmetric part of the velocity gradient
tensor Wij = ∂iuj . The alignment parameter ξ quantifies
how the director responds to pure shear flow.

The passive contributions of the hydrodynamic stress
tensor Πpassive in the Navier-Stokes equations are
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where ρ is the density, η the viscosity, p the bulk pres-
sure and Q̃ =

(
Q + 1

3I
)
. The free energy density f =

fLC + fGL consists of a liquid crystal component fLC
for the orientational order parameter Q and a Ginzburg-
Landau contribution fGL for a concentration field ϕ
which is described below.

The mechanical and geometric properties of cells are
accounted for by choosing an appropriate nematic free
energy density of the system

fLC = ALC

{
1

2

(
1− η̄(ϕ)

3

)
tr(Q2)− η̄(ϕ)

3
tr(Q3)

+
η̄(ϕ)

4
tr(Q2)2

}
+

1

2
KLC (∇Q)

2
(5)

which includes the usual Landau-de Gennes bulk energy
of the liquid crystal and a term which penalizes elastic
deformations of the director field [2].

We follow the shape of the growing spheroids by
modelling them as deformable, nematic droplets in an
isotropic fluid background. This is achieved by solving
the reaction-diffusion equation of a concentration field
ϕ(x, t), as described in detail in previous work [3]:

(∂t + u · ∇)ϕ = Γϕ ∇2µ . (6)

Here u is the velocity field and the mobility Γϕ quantifies
how fast ϕ responds to gradients in the chemical potential
µ = δF/δϕ. The free energy density fGL is chosen to
take the Ginzburg-Landau form

fGL = Aϕϕ
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This describes phase separation into two stable phases
with concentrations ϕ = 0, 1 and with an interface of
width L ∼

√
Kϕ/Aϕ which separates the inside (ϕ = 1)

and outside (ϕ = 0) of spheriods and introduces a sur-
face tension γ ∼

√
AϕKϕ [4]. Parameters Aϕ and Kϕ

are chosen to match the surface tension γ measured in
experiments, while ensuring that the interface width is
much smaller than any other length-scale in the system,
L� min[`a, `m]. Since cell aggregates are modelled using
a continuous concentration field 0 ≤ ϕ ≤ 1, the net cell
production rate and active stress in simulations are con-
tinuous functions and follow kLBp = ϕ kp and ζLB = ϕ ζ,
respectively (see Fig. S2).

Throughout the paper we use the following simulation
parameters, in lattice-units, unless otherwise stated: ρ =
1, η = 2/3, Aϕ = 0.2, Kϕ = 0.4, Γϕ = 0.2, ALC = 1.5,
KLC = 0.03, Γ = 0.1. To highlight the effects of flow-
induced elongation of isotropic cells in section III A, we
chose η̄ = 2.55 + 0.1ϕ which creates an isotropic phase
Seq = 0 inside droplets unless flows drive nematic order
for ξ 6= 0. In sections III B-D, we chose η̄ = 2.7+0.3(ϕ−
0.5) which creates nematic order Seq = 0.3 of constant
magnitude inside aggregates (ϕ = 1), while ensuring that
the fluid environment stays isotropic (ϕ = 0).

II. STABILITY ANALYSIS OF ISOTROPIC
SPHEROIDS

We derive the stability of the isotropic state Qij =

0+Q
′

ij by expanding the Beris-Edwards equation to first
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order in perturbation parameter Q
′
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Following eqn. (1), the leading order contribution of the
co-rotation term Wij is

Wij =
2

3
ξẼij +O(ε) , (9)

where we have used the symmetry of Ẽij and Q
′

ij . The
stability of the isotropic state is thus governed by
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where we have neglected the advective term, uk∂kQij ,
since spatial gradients ∇Q vanish in the isotropic state.
In spherical coordinates the strain rate tensor Eij =
(∂jui + ∂iuj)/2 has components

Err = ∂rur , (11)

Eθθ = Eφφ =
ur
r
, (12)

Erθ = Erφ = Eθφ = 0 , (13)

where we have used the symmetry of the flow field
u(r, θ, φ) = ur(r)r̂. This yields the initial growth rate
of the radial component of the nematic order
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III. MAPPING OF SIMULATION
PARAMETERS TO EXPERIMENTAL VALUES

In order to map lattice Boltzmann (LB) simulation
parameters to dimensional quantities in physical units,
one requires a physical reference scale for three indepen-
dent LB parameters, such as the lattice spacing δx, a
force scale and the viscosity. For modelling the organ-
isation of three-dimensional, multicellular spheroids, we
chose a lattice spacing such that the total diameter of an
aggregate is about 50 lattice sites, δx ≈ 0.04 R. To es-
timate the bending rigidity of cells KLC in experiments,
we need to relate the mechanical properties of individ-
ual cells to the effective constant KLC of the nematic
description. If we assume that cells in a dense aggre-
gate must physically deform when the nematic order is
distorted, the elastic energy associated with cell shape
deformations is related to the cells’ Young modulus E
and cell size L. From dimensional arguments, it follows
that KLC ∼ E · L2 [5]. The typical size and Young’s
modulus of colon and breast cancer cell lines is of the
order of L ∼ 10 µm and E ∼ 100 Pa [6–8], respectively,
which yields KLC ∼ 10−8N . Choosing KLC = 5 · 10−8N
and the apparent viscosity of cell aggregates η ≈ 60kPas
[9, 10] as LB reference scales, the LB parameters map to
the following physical units:

Parameter LB units Physical units
Aggregate size R 25 300 µm
Bending rigidity KLC 0.03 5 · 10−8 N
Viscosity η 2/3 60 kPa s
Lattice spacing δx 1 12 µm
Time step δt 1 15 s
Critical concentration mc 0.8 0.8
Penetration length `M 12 150 µm
Growth rate kp 8 · 10−4 5 · 10−5 s−1

Active stress ζ 0.005− 0.04 30− 240 Pa
Surface tension γ 0.3 4 · 10−2 N/m
Spheroid bulk energy Aϕ 0.2 2.4 kPa
Nematic bulk energy ALC 1.5 18 kPa
Rotational diffusivity Γ 0.1 6 · 10−7 (Pa s)−1

Mobility Γϕ 0.2 8 · 10−16 m2/Pa s

As outlined in section III D, these parameters are in
good agreement with mechanical properties of cell ag-
gregates measured in experiments, with typical tissue in-
terfacial tensions γ ∼ 10−2 N/m [9, 11–13]. It should be
noted, however, that the mechanical properties of cell ag-
gregates may vary greatly as the Young’s modulus varies
over several orders of magnitude, E ∼ 0.1−10kPa for dif-
ferent cell types [14, 15]. Similar variations are observed
for the effective viscosity of tissues and cell aggregates,
η ∼ 10− 100 kPa s [11, 12, 16].

IV. DETECTION OF DISCLINATION LINES
AND CALCULATION OF THE TWIST ANGLE β

We use Zapotoky’s defect-finding algorithm [17] to find
defect positions on three-dimensional grids. This ap-
proach checks if a disclination is located at the inter-
section of four voxels forming a 2 × 2 square repeated
along all three coordinate axis [18]. When a disclination
is found, the rotation vector Ω along which the director
field winds is determined by taking the cross product of
each pair of directors around it. Once all grid points are
classified, continuous disclination lines are identified as
the shortest line connecting all defect positions, and the
twist-angle β can be obtained by measuring the angle be-
tween Ω and the local line tangent. A shortcoming of this
algorithm is that the rotation vector Ω has an arbitrary
sign and therefore is unsuited to distinguishing between
β = 0 (−1/2-type) and β = π (+1/2-type) disclinations.
To achieve this, we calculate the saddle-splay energy

f̄24 = ∇ · [(n · ∇)n− n(∇ · n)] , (15)

which is negative for β = π line segments, positive at
β = 0 segments and zero for twist defects [19]. The
calculation of the line tangent is performed on a discrete
grid, hence the local tangent does not vary continuously
along disclination lines which leads to the small color
jumps seen for some disclination line segments in Fig. S3
and Fig. S4.
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V. SUPPLEMENTARY FIGURES
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FIG. S1. (a) Steady-state radius Rc/`m as a function of critical metabolite concentration mc. (b-e) In steady-state spheroids
the critical concentration mc controls the shape of the radial metabolite profile m (panel b), cell production profile k?p (panel
c) and flow profile ur (panel d). The cell production rate k?p and cell flow ur are normalized to the cell production rate at the
surface, k0p = kp(1 −mc). (e) The strain rate at the surface of spheroids, which drives flow-induced cell elongation, scales as
∂rur ∼ kp`−3

m and reaches a maximum value at mc ≈ 0.6. (f) Time-evolution of the radial cell alignment Qrr ∼ S in numerical
simulations initialized as S = 0 with ξ > 0. Initially S follows the linear growth rate shown by eqn. (13) in the main text
(black, dashed line). At late times, however, non-linear contributions arising from advection and the molecular field H balance
the growth rate and S reaches a steady-state profile (yellow line). (g,h) Numerical cell alignment profiles at steady-state for
different values of cell parameters ALC and KLC . Simulations were performed with spheroids of size R = 30 using isotropic
cells (Seq = 0) and kp = 0.001, ξ = 0.3.
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FIG. S2. (a) Snapshots showing the time evolution of the velocity field u inside a growing cell aggregate (ζ = 0) using the

hybrid lattice Boltzmann-finite difference method. At early times the spheroid is in a growing state Ṙ > 0 because sufficient
metabolites are available throughout the aggregate, m(r) > mc, creating diverging cell flows ur > 0. As the aggregate size
increases, cells in the core will eventually have insufficient access to metabolites, m(r = 0) < mc, resulting in converging cell
flows ur < 0 towards the centre. Spheroids will finally reach a steady state in which cell division and death exactly balance,
Ṙ = 0, leading to ur < 0 throughout the aggregate. Snapshots show the cross-section at the equator of a growing spheroid
defined by a concentration field ϕ (see appendix I), where the boundary of the aggregate is marked by the contour ϕ = 0.5
(green line). (b-d) Comparison between metabolite concentration m, velocity field ur and active stress ζ? obtained in lattice
Boltzmann simulations (orange) and analytical solutions (black, dotted line) following eqns. (9, 11) in the main text. We
validated that in the absence of sources and sinks in the continuity equation, ∇ · u = 0, the flow fields obtained from the
lattice-Boltzmann solver remain incompressible, with density fluctuations δρ/ρ < 0.03.
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FIG. S3. (a) Cell alignment quantified by the average alignment angle 〈cos θ〉 as a function of radial coordinate for different
magnitudes of active stress ζ. The data is identical to that used in Fig. 2 e in the main text. (b) Cell alignment Ψ for
different values of alignment parameter ξ. All other parameters are identical to the ones used in Fig. 2. (c) In two-dimensional
cross-sections of the 3D director field inside active spheroids one can identify topological defects as points where the nematic
director field discontinuously changes its direction. If the director field around a defect has no out-of-plane component, nz = 0,
it is called a wedge-type disclination and resembles ±1/2 defects in 2D systems. If the out-of-plane component nz significantly
varies around a defect it is called a twist-type disclination. Disclination lines in three dimensions can continuously transform
from a local −1/2 configuration (in the plane perpendicular to the line) into a +1/2 configuration through an intermediate
twist winding. Disclination lines can be locally classified by the twist-angle β between the axis Ω that the director field winds
around and the local line tangent t (yellow arrow). (d) Due to activity disclination lines act as self-propelled entities moving
through the fluid leading to spatiotemporally chaotic flows. Disclination lines constantly undergo transformation events such
as breakup, recombination, nucleation and annihilation and form either closed, charge-neutral loops in the bulk or terminate at
the surface of droplets. (e) The distribution of disclination types follows the activity profile ζ? ∼ (m−mc), where contractile
regions in the core are dominated by wedge-type ±1/2 disclinations and twist-type defects are preferentially formed in extensile
regions close to the surface. (f) Activity gradients in the aggregate create active torques on +1/2 defects which aligns them
parallel to activity gradients, where the head-to-tail vector p ∼ ∇ζ?. Using a polarization order parameter P [20] to quantify
the magnitude of defect alignment, we find that +1/2 defects are radially polarized throughout the aggregate. The polarization
order parameter P reaches a maximum at the radius r ≈ rtrans, where ζ? ≈ 0 and activity gradients dominate isotropic active
turbulence, Q∇ζ? > ζ?∇Q. This is also reflected in the radial defect distribution in (c), where radially polarized +1/2 defects
move outwards/inwards in contractile/extensile regions, thus accumulating around r ≈ rtrans. Numerical details of the detection
of disclination lines and the calculation of the twist angle β are outlined in appendix IV.
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FIG. S4. As the activity ζ is progressively increased inside proliferating spheroids with ξ < 0, the droplet undergoes three
dynamical regimes: first a quiescent regime where converging flows are dominant (a,d), then a rotational dancing disclination
regime, where disclination lines spontaneously set up a rotational flow and, finally, active turbulence. (a,d) Two-dimensional
cross-sections of the director field and disclination line structure. At very low activity the director field is stationary and the
2D cross-section resembles a +1 defect with angular director alignment (Ψ < 1), where two +1/2 defects are located at a small
finite distance to the centre. Contractile stress around defects creates active forces Fact pointing towards the centre (red).
If activity is sufficient small, active forces are balanced by repulsive elastic forces Fel (blue) arising from an increased elastic
energy as the distance between +1/2 defects decreases. (b,e) If activity surpasses a critical threshold ζc, the system reaches
a steady-state where the two +1/2 disclination lines start orbiting around each other, thereby creating persistent rotational
motion in the core of spheroids, as shown by the cross-section of the velocity field. The outward-facing orientation of the
defects creates significant radial alignment of the director field in the vicinity of the orbiting defects (Ψ > 1). The rotational
motion of defects in the core makes it inevitable that disclination lines must cross after each full rotation, thereby rewiring some
line segments (see third panel in e). (c,f) As activity progressively increases, the motion of disclination lines and flow fields
becomes more chaotic and the system eventually reaches active turbulence. The snapshots shown in this figure were obtained
for ξ = −0.4 and disclination lines are coloured according to their local twist-angle β using the color map shown in Fig. S3.

FIG. S5. Posterior distributions p(Θ|X) over model parameters Θ = [ζ, ξ] given data X = [Ψexp
s ,Ψexp

c ] for different tolerance
values σ. The variance of posterior distributions increases with larger tolerance, but the mode of the distributions remains the
same.
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