
Journal Name

Electronic supplementary information for: Spontaneous
Symmetry-breaking of Active Cluster Drives Directed
Movement and Self-sustained Oscillation of Symmetric
Rod-like Passive Particles
Ying Lan,a Man Xu,a Jinjiang Xie,a Yuehua Yang,a and Hongyuan Jiang∗a

a CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for physical
Science at the Microscale, Department of Modern Mechanics, CAS Center for Excellence in Complex System
Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.

The Electronic Supplementary Information section contains additional figures and movies to show simulation
details and theoretical predictions.

Journal Name, [year], [vol.],1–?? | 1

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2023



1 Simulation
1.1 The Numerical Model
In this work, we use a classical collision-based model ? ? to investigate the directed movement and oscillation of symmetric rod-like passive particles
(RPP) . We consider a rod-like passive particle confined by a harmonic potential in an active bath consisting of Na spherical active particles with diameter
σa. The length and width of the rod-like passive particle are L and σa, respectively. The position of each active particle is ri. The magnitude and
orientation of active velocity of the i-th active particle are va and ûi = (cosθi,sinθi), where θi is the angle between active velocity and x-axis. We assume
the i-th active particle interacts with the j-th active particle via a pure repulsive Lennard-Jones (LJ) potential, Ui j = k(σa/|ri j|)12 for |ri j|< 21/6σa, where
k is the intensity of the interaction and ri j = r j−ri is the relative position of the j-th active particle to the i-th active particle. And active particles interact
with the rod-like passive particle via the similar LJ potential Uip, where the j-th active particle is replaced by a virtual point at a distance σa/2 behind the
boundary of the rod-like particle with rip perpendicular to the boundary in Fig. S1, and rip is the relative position of the virtual point to the i-th active
particle.
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Fig. 1 Interaction between particles. (a) Interaction between two active particles. (b) Interaction between active particles and the passive particle when the i-th
active particle locates in different areas (area 1-3) relative to the passive particle.

If we consider the low Reynolds number regime, the dynamics of the i-th active particle is given by overdamped Langevin equation ? ? ?

γTaṙi =−∇riUip−∇ri ∑
j 6=i

Ui j + vaγTaûi +
√

2kBT γTaη
T
i ,

γRaθ̇i =
√

2kBT γRaη
R
i ,

(1)

where γTa = 3πµσa and γRa = πµσa
3 are the translational and the rotational friction coefficient, and µ is the dynamic viscosity of water. kBT is the

thermal Boltzmann energy. ηT
i is the Gaussian white noise with zero mean and variance

〈
ηT

iα (t)η
T
jβ (t

′)
〉
= δi jδαβ δ (t− t ′), where α and β denote

Cartesian coordinates, and ηR
i is the Gaussian white noise with zero mean and variance

〈
ηR

i (t)η
R
j (t
′)
〉
= δi jδ (t− t ′).

For simplicity, we assume the rod-like passive particle can only move along x-axis and under the confinement of an external harmonic spring potential.
Therefore, the motion of the rod-like passive particle ? ? ? ? ? can be given as

γpẊp =−∑
i

∂Uip

∂Xp
− keqXp, (2)

where keq is harmonic potential stiffness, Xp and γp are the x-coordinate of RPP centroid and translational friction coefficient of RPP along x-axis.

1.2 The Simulation Procedure
The parameters used in the simulation are listed in Table ??. We choose σa, τ = 1/DR and kbT as the unit of length, time and energy to normalize
all the equations, where DR = kBT/γRa is the rotational diffusivity of active particles. Unless otherwise specified, all variables in the following sections
will be expressed in dimensionless form. Our model consists of Na spherical active particles and one rod-like passive particle. Furthermore, periodic
boundary conditions is used and the simulation box is a rectangle (Lx×Ly). The area fraction of active particles is defined as φ = NaSa/(LxLy−Sp), where

Table 1 Summary of the parameters used in the model calculations.

Parameter Description Value from experiments Value in simulation Value in theory
σa Diameter of active particle, µm 1∼ 3 ? ? 2 -
va Self-propelled speed, µm · s−1 19.3 ? 19.3 19.3
γTa Active translational friction coefficient, kg · s−1 10−8 ? 1.6×10−8 -
γRa Active rotational friction coefficient, kg ·m2s−1 10−20 ? ? 2.1×10−20 -
τ Persistent time of diffusion, s - 5.2 -
T Temperature of the system, K 295∼ 300 ? ? 300 -
µ Dynamic viscosity of water, kg ·m−1s−1 10−3 ? ? 0.9×10−3 -
L Length of passive particle, µm 131 ? 100 100
γp Passive translational friction coefficient, kg · s−1 - 5.4×10−8 5.4×10−8
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Fig. 2 The position of passive particle Xp and the autocorrelation function C(τ) of Xp. (a) L = 5, va = 5, (b) L = 25, va = 50, (c) L = 40, va = 30, and (d) L = 50, va = 40.

Sa = πσ2
a /4 and Sp = Lσa− (1−π/4)σ2

a are the projected areas of an active particle and the rod-like passive particle, respectively. Based on previous
work ? , we choose φ = 0.2 to enable active particles to cluster around the long rod-like passive particle and fail to cluster in the absence of the passive
particle.

We use the modified LAMMPS to execute the simulation. The translational friction coefficient of the rod-like passive particle is calculated by software
package HYDRO++ ? . The initial distribution of active particles is a rectangular lattice with random ûi

? . To ensure that the results are independent of
the initial condition and dynamically stabilized, the system is relaxed for 80 τ before sampling.

The size of the simulation area is selected according to the following conditions: (1) Lx/Lcx ≥ 5, Ly/Lcy ≥ 5, where Lcx and Lcy are the average length
and width of the areas consisting of active particles clustering around the rod-like passive particle; (2) Nc/Na ≤ 0.1, where Nc is the number of neighbor
particles. The first condition can reduce the influence of periodic boundary conditions on simulation results. The second condition ensures that the
density of active particles outside the cluster is nearly unperturbed when active particles cluster around the rod-like particle. As a result, we choose
Lx = 300 and Ly = 200 in our simulations.

1.3 Details of Periodic Movement
1.3.1 Judging Criteria of Periodic Motion

Whether the movement of the passive particle is a periodic oscillation can be identified by the autocorrelation function C(τ) of its displacement of passive
particle Xp

? . The autocorrelation function C(τ) is defined as
〈
Xp(t)Xp(t + τ)

〉
/
〈
Xp(t)Xp(t)

〉
, where 〈·〉 means the time average. We use the first positive

peak value C1 of the autocorrelation function to determine whether the movement of the passive particle is periodic. Generally, C1 ranges from 0 to 1,
and the larger the value of C1 is, the closer the movement is to periodic oscillation. Due to the active noise, C1 can’t reach 1. In our simulation, we
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choose the threshold of periodic motion as Ct = 0.3. When C1 < Ct , the movement of the passive particle is dominated by random motion and not a
periodic oscillation (Fig. S2a-b). When C1 ≥Ct , the passive particle undergoes periodic oscillation (Fig. S2c-d).

1.3.2 Period and Amplitude of Self-sustained Oscillation of Passive Particle

The oscillation period of the passive particle is quantified as the average interval between the adjacent maximum of the autocorrelation function of Xp.
The oscillation amplitude of the passive particle is calculated as one half of the average difference between adjacent maximums and minimums of Xp.

1.4 Spontaneous Symmetry Breaking of Neighboring Active Particles

In the main text, we demonstrate the spontaneous symmetry breaking of neighboring active particle distribution around the free passive particle leads to
the emergence of cluster polarity and asymmetric resultant force from active particles that drives the directed motion of the passive particle. Furthermore,
we also find the persistence time of the cluster polarity or directed motion of passive particle increases with Nc. What’s more, the motility of the rod
(speed and persistence) increases with the rod length (L), as shown in Fig. S3(a)-(b).
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Fig. 3 The net motion of RPP. It indicates a net forward motion (a) and backward motion (b) of RPP (va = 80).

As demonstrated in Fig. 2(e) of our main text, the polarity and size of the active clusters are fluctuating. Furthermore, higher velocity or larger
RPP can suppress the stochasticity of active noise. As shown in Fig. S4, the rod-like passive particle can have a net forward and backward motion,
respectively, which lasts for 16000 and is larger than the sampling time in our manuscript (Fig. S4(a) insert). It can be observed that the result of a net
motion appears in a specific simulated sample. The probability of being forward and backward in different samples is equal. So, the motion of the rod
remains a net motion instead of a zero average net effect.
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Fig. 4 The net motion of RPP. It indicates a net forward motion (a) and backward motion (b) of RPP (va = 80).

The above results are similar for self-sustained periodic oscillation when keq is finite. Fig. S5a shows probability distribution of (n−−n+)/(n−+n+),
where n+ and n− are the number of active particles moving along the positive and negative directions of x-axis relative to passive particle at a certain
time. Apparently, the spontaneous symmetry breaking of neighboring active particle distribution still exists for the self-sustained periodic oscillation of
passive particle (Fig. S5a). Furthermore, we also find the persistence time of the cluster polarity or directed motion of passive particle increases with Nc

when keq is finite (Fig. S5b).

1.5 Negative Viscosity and Force Thickening Effect

When the passive particle is towed with a constant force Fd ( or a constant velocity Vp), the effective viscosity can be defined as γe = Fd/Vp. Thus, the
opposite signs of Fd and Vp indicate the effective viscosity of the active bath is negative. Specifically, the negative slope region (dFd/dVp < 0) of Fd -Vp

curve is unstable since the passive particle moves faster under bigger resistance force in this regime (Fig. 5d in our main text), which is similar to the
instability of negative stiffness during spontaneous oscillation of hair bundles in internal ears ? . Our results are similar to the “negative” viscosity in the
active microrheology ? , where one measures the mobility ? ? ? or the effective friction ? of the tracer particle driven by a constant force or a constant
velocity. It should be noted that the local “negative” viscosity in active microrheology is not equivalent to global “negative” viscosity in bulk rheology. In
bulk rheology, “negative” effective shear viscosity means that a shear stress must be applied in a direction opposing the flow to maintain a fixed shear
rate ? ? .

What’s more, in our previous work ? ,we observed that the chevrons maintain a directed motion along their main axis. As active particles accumulate
around the sharp corners of the chevrons, the chevrons spontaneously maintain a constant velocity without any external pulling force, which suggests
the presence of a negative viscosity.
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Fig. 5 Spontaneous symmetry breaking of neighboring active particle drives the self-sustained oscillation of passive particle. (a) Probability distribution of
(n−−n+)/(n−+n+), where n+ and n− are the number of active particles moving along the positive and negative directions of x-axis relatively to passive particle at a
certain time. (b) Persistence time of directed motion increases with cluster size.

The results in Fig.5 and Fig.6 in our main text depend on the negative viscosity. Fig. S6 shows negative viscosity arises with higher active velocity and
larger length of the passive particle. What’s more, the self-sustained oscillation and forced oscillation of RPP similar to our manuscript would appear
due to negative viscosity effect. The phase diagram of Fig. S6 is consistent with Fig. 3(a) in our main text.
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Furthermore, we find that the effective viscosity γe of the active bath nonlinearly depends on Fd (Fig. S7), which shows the force thickening effect.
This thickening behaviour correlates with the development of the active cluster surrounding the passive particle, in which active particles accumulate
behind the passive particle and deplete in front of it (inserts in Fig. 5a). Strong external force delocalizes the neighboring particle from active cluster,
resulting in a pronounnced force-thickening behavior of the single-particle friction. The similar force thickening effect has been predicted by simulations
and observed experimentally ? ? ? .

1.6 A rotatable RPP
Our results are still applicable if the rod-like passive particle (RPP) is able to rotate. To confirm this conclusion, we performed some new calculations.
Fig. S8(a)-(c) shows active particles still cluster around the rotatable RPP. The tail detachment of a group of particles from the cluster is also observed
in Fig. S8(b). We can construct a body frame with the major axis of the RPP as the x-axis. In this body frame, the RPP shows a long-time directed
motion along the x-axis and a stochastic motion along the y-axis, as seen in Fig. S8(d). Fig. S8(e) also shows that the number of neighboring particles
(the cluster size) is highly dynamic. Comparing (d) with (f), we find that the rotational degree of freedom suppresses the RPP’s directed motion, which
randomizes the direction of the RPP’s motion.
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1.7 The system reaching the threshold for MIPS
Moreover, when exploring the system reaching the threshold for MIPS, the active system without passive particles is divided into low density region and
high density region, as shown in Fig. S9(a) and (b). When a rod-like passive particle is immersed in active systems, the case is slightly different. The
phase separation process is accelerated and the cluster in the system is larger than the one in the system without a passive particle, as shown in Fig.
S9(c). This indicates that the rod-like passive particle is in favor of nucleation. However, the rod-like passive particle is removed from the large active
cluster and has no ability to go through the large cluster.
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Fig. 9 The active cluster with the active system reaches the threshold for MIPS. (a) the low density and high density phases in the active system without passive
particles. (b) Probability distribution of the area fraction. (c) Snapshots of the active system with a RPP. The active particle marked in red is neighboring particle.

6 | 1–??Journal Name, [year], [vol.],



2 Theoretical Model
2.1 Minimal 1D Theoretical Model

moving along negative axisx −moving along positive axisx −

c
bk +

bk −
uk +

uk −

Fig. 10 Sketch of 1D theoretical model. There are N active particles in the system. The active particles can switch direction and attach to or detach from the
passive particle randomly. Among active particles attaching to passive particle, there are n+ and n− active particles moving along the positive and negative directions
of x-axis with the velocity of v+ and v−, respectively. c is the mutual conversion rate between the two populations of active particles. k+b and k+u (k−b and k−u ) are the
binding rates of free active particles and the unbinding rates of attached active particles moving along the positive (negative) directions of x-axis, respectively.

In this paper, we proposed a simple 1D theoretical model to verify our mechanism. Our model consists of a rod-like passive particle with length L
(marked with green in Fig. S10), and N active particles. For simplicity, we assume that the active particles can only move along x-axis with constant
speed va, and they can switch direction and attach to or detach from the passive particle randomly. Among active particles attaching to the passive
particle, there are n+ and n− active particles moving along the positive and negative directions of x-axis with the velocity of v+ and v−, respectively.
Furthermore, we also choose σa, τ = 1/DR and kBT as the unit of length, time and energy to normalize all equations in our theoretical model. When not
specified, physical quantities will be expressed in dimensionless form.

The force on the passive particle applied by an active particle moving along the positive and negative direction of x-axis, i.e., F+ and F−, are

F+ = γap(v+− Ẋp),

F− = γap(v−− Ẋp),

(3)

where γap is the friction coefficient between passive particle and active particles, and Xp and Ẋp =Vp are the position and velocity of centroid of passive
particle, respectively. The force balance equation of the active particles are

γav+ =−F++ γava,

γav− =−F−− γava.

(4)

Therefore, the force balance equation of the passive particle is

n+F++n−F−− γpẊp− keqXp = 0, (5)

where keq is the stiffness of harmonic potential, and γp is the viscous drag coefficient of passive particle.
The active particles can switch direction and attach to or detach from the passive particle randomly in our theory. So, the time evolution of two

populations of active particles moving along the positive and negative directions of x-axis with the velocity of v+ and v− can be described by

ṅ+ = cn−− cn++ k+b (N−n+−n−)− k+u n+,

ṅ− = cn+− cn−+ k−b (N−n+−n−)− k−u n−,
(6)

where N is the total number of active particles in the system, c is the mutual conversion rate between the two populations of active particles. k+b
and k−b are the binding rates of free active particles moving along the positive (negative) directions of x-axis, respectively. k+u and k−u are the unbinding
rates of attaching active particles moving along the positive (negative) directions of x-axis, respectively. The binding rate of active particles decreases

exponentially with the relative velocity of active particle to the passive particle, i.e, k+b = k+b0e−A(va−Ẋp)
2
/v2

a , and k−b = k−b0e−A(−va−Ẋp)
2
/v2

a , where A is a
positive constant, k+b0 and k−b0 are the binding rate constants. Conversely, the unbinding rate of attached active particles increases exponentially with the

relative velocity of active particle to the passive particle, i.e, k+u = k+u0eB(v+−Ẋp)
2
/v2

a and k−u = k−u0eB(v−−Ẋp)
2
/v2

a , where B is a positive constant, and k+u0 and
k−u0 are the unbinding rate constants.

To compare the results of our theoretical model and simulations, the same dimensionless parameters are used as shown in Table ??. The values of
other free parameters in our theory are N = 2000,γap = 0.05, k+b0 = k−b0 = 0.003, k+u0 = k−u0 = 0.09, c = 0.3, A = 1×10−6, and B = 1.5625, unless otherwise
specified.

Table 2 Dimensionless parameters used in the simulations and theoretical model.

Parameter Description Value in simulation Value in theory
va Self-propelled speed 50 50
γTa Active translational friction coefficient 3 3
γp Passive translational friction coefficient 25 25
keq the stiffness of harmonic potential 0,4, and ∞ 0,4, and ∞

L Length of passive particle 50 50
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2.2 Theoretical Results
2.2.1 Dynamics of the Rod-Like Passive Particle under Different Strength of Harmonic Potential

In Fig. S11, we show that the passive particle can keep a long-live directed motion or a periodic oscillation by tuning the strength of harmonic potential,
which is consistent with our simulation. If keq goes to infinity, the position of the rod-like passive particle is fixed and n+ = n− at the stable state (Fig.
S11a). When keq = 0, the free passive particle moves either forward (Fig. S11b) or backward (Fig. S11c) at a constant speed depending on the initial
values of n+ and n−. Notably, the constant speed is nearly the same as the free speed of the passive particle in our simulation when we use the same
parameters. It should be noted that due to the lack of stochastic thermal noise in our simplified theory, the free passive particle can’t switch direction. If
keq is finite, we find the rod-like passive particle can undergo self-sustained periodic oscillation (Fig. S11d). In this 1D theoretical model, we can define
the polarity and size of active cluster as Px = n−−n+ and Nc = n−+n+, respectively.

2.2.2 Self-sustained Periodic Oscillation of Passive Particle

In our simplified theory, we can also investigate how the velocity of active particles va and the length of passive particle L determine the movement of
passive particle (Fig. S12a) and the size of active cluster (Fig. S12b), and how external constraint keq and viscous drag γp affect the period (Fig. S12c)
and amplitude (Fig. S12d) of oscillation. As shown in Fig. S12, the results of our theoretical model agree with the simulation well.

2.2.3 Relationship between Vp and Fd

When a rod-like passive particle (keq = 0 ) is towed along the x-axis at a constant velocity Vp, we have Ẋp =Vp and Eq. (5) should be modified to

n+F++n−F−− γpẊp +Fd = 0. (7)

When the system reaches a steady state, Eq. (6) becomes

0 = cn−− cn++ k+b (N−n+−n−)− k+u n+,

0 = cn+− cn−+ k−b (N−n+−n−)− k−u n−.
(8)

By solving Eq. (7) and (8), we obtain

n+ =
N(ck+b + ck−b + k+b k−u )

2ck+b +2ck−b + ck+u + ck−u + k−b k+u + k+b k−u + k+u k−u
,

n− =
N(ck+b + ck−b + k−b k+u )

2ck+b +2ck−b + ck+u + ck−u + k−b k+u + k+b k−u + k+u k−u
,

Fd =
γapγaN[(2ck+b +2ck−b + k+b k−u + k−b k+u )Vp− (k+b k−u − k−b k+u )va]

(γap + γa)(2ck+b +2ck−b + ck+u + ck−u + k−b k+u + k+b k−u + k+u k−u )
+ γpVp.

(9)

As a result, we obtain the cluster Nc and the polarity Px of attaching active particles as the function of Vp. As shown in Fig. 5b of the main text, the
Fd -Vp relationship obtained from our simplified 1D theoretical model agree with the simulation results very well.

In this simplified 1D theoretical model, the rod-like passive particle can also be towed with a constant force Fd along the x-axis. The main results
are similar to those of the constant velocity case. Consistent with our simulations, when the pulling force is located in [-Fd,c,Fd,c], the passive particle
velocity is bistable and then able to snap through between bistable states.

2.2.4 Two Different Oscillations Triggered by the Passive Particle’s Velocity Jumping-off

By using this simplified 1D model, we can also reproduce the two different oscillations of the passive particle observed in our simulations (Fig. 6 in the
main text). We find the oscillatory trajectories of Fd -Vp curve in the above two cases are quite different. For periodic linear force loading, the system
follows a limit cycle (marked with the blue lines), whose trajectory mainly emerges in the stable straight segment of the Fd -Vp curve (Fig. S13a). In
contrast, the limit cycle of the self-sustained oscillation does not coincide with the Fd -Vp curve (Fig. S13b) since the force provided by the spring is not
constant.
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3 Captions of Supplementary Movies.
Supplementary movie 1. Four typical cases of passive particle movement and active cluster structure. (a) Fixed passive particle with keq = ∞ and
va = 50. (b) Free passive particle with keq = 0 and va = 50. (c) Partially free passive particle undergoing periodic oscillation with keq = 4 and va = 50. (d)
Partially free passive particle undergoing stochastic movement with keq = 4 and va = 15.

Supplementary movie 2. Aggregation states of neighboring particles around the passive particle with different active velocities (va) and the length
of the passive particle (L). (a) No aggregation for va = 5 and L = 5. (b) No aggregation for va = 50 and L = 5. (c) No aggregation for va = 5 and L = 50.
(d) Aggregation of active particles for va = 50 and L = 50.

Supplementary movie 3. The appearance and disappearance of “spontaneous broken symmetry of active cluster” by controlling the velocity of the
passive particle. (a) The structure and dynamics of active cluster. (b) Time evolution of the position of the passive particle, the polarity of the cluster,
and the cluster size.

Supplementary movie 4. The detailed process of active cluster detachment in Fig. 4g. (a) The structure and dynamics of active cluster. (b) Cluster
size (Nc). (c) Cluster polarity (Px).

Supplementary movie 5. The velocity jumping-off during the forced oscillation of passive particle. (a) The periodic linear force applied on the
passive particle (Fd). (b) The relationship between the velocity of passive particle (Vp) and the external force (Fd). (c) The velocity of passive particle
(Vp) and the polarity of an active cluster (Px). (d) The structure and dynamics of active cluster.

Supplementary movie 6. The velocity jumping-off during the self-sustained periodic oscillation of passive particle. (a) The external force from the
harmonic potential (Fd). (b) The relationship between the velocity of passive particle (Vp) and the external force (Fd). (c) The velocity of passive particle
(Vp) and the polarity of the active cluster (Px). (d) The structure and dynamics of active cluster.
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