Electronic Supporting Information

S1. ¹ H, ¹³ C AND ¹¹ B NMR SPECTRA OF NEW COMPOUNDS	2
S2. RHEOMETRY OF GELS IN CYCLOHEXANE AND ETHYL MYRISTATE	26
<u>S3. SEM IMAGES OF XEROGEL SAMPLES (X10 000), BAR = 1 μM</u>	28
S4. SAXS ANALYSIS	30
S5. HYDROLYSIS EXPERIMENTS	32
S6. THEORITICAL AND COMPUTATIONAL PART	33
S7. GELATION DATA IN HANSEN SPACE	39
S8. 1H NMR AT VARIABLE TEMPERATURE	40

S1. ¹H, ¹³C and ¹¹B NMR spectra of new compounds

¹¹B{1H} NMR (CDCl₃, 96 MHz) of compound **1a**

¹³C NMR spectrum (CDCl₃, 75 MHz) of compound 2a

 $^{11}\text{B}\{1\text{H}\}\,\text{NMR}$ (CDCl3, 96 MHz) of compound 2a

 $^{11}\text{B}\{1\text{H}\}\,\text{NMR}$ (CDCl3, 96 MHz) of compound 2b

¹¹B{1H} NMR (CDCl₃, 96 MHz) of compound **2c**

 $^1\,\text{H}$ NMR spectrum (CDCl₃, 300 MHz) of compound 2d

¹³C NMR spectrum (CDCl₃, 75 MHz) of compound **2d**

¹¹B{1H} NMR (CDCl₃, 96 MHz) of compound **2d**

8.2 -58.3 -58.4 -58.5 -58.6 -58.7 -58.8 -58.9 -59.0 -59.1 -59.2 -59.3 -59.4 -59.5 -59.6 -59.7 -59.8 -59.9 -60.0 -60.1 -60.2 -60.3 -60.4 -60.5 -60.6 -60.7 -60.8 -60.9 -60 19F

 $^{19}\text{F}\{1\text{H}\}\,\text{NMR}$ (CDCl3, 282 MHz) of compound 2e

¹³C NMR spectrum (CDCl₃, 75 MHz) of compound **3a**

 $^{11}\text{B}\{1H\}$ NMR (CDCl₃, 96 MHz) of compound 3a

¹³C NMR spectrum (CDCl₃, 75 MHz) of compound 4a

 $^{11}\text{B}\{1H\}$ NMR (CDCl₃, 96 MHz) of compound 4a

¹³C NMR spectrum (CDCl₃, 75 MHz) of compound **4b**

 $^1\,\text{H}$ NMR spectrum (CDCl₃, 300 MHz) of compound 4c

 $^{11}\text{B}\{1\text{H}\}\,\text{NMR}$ (CDCl3, 96 MHz) of compound 4c

¹¹B{1H} NMR (CDCl₃, 96 MHz) of compound **4d**

 $^{19}\text{F}\{1\text{H}\}\,\text{NMR}$ (CDCl3, 282 MHz) of compound 4e

S2. Rheometry of gels in cyclohexane and ethyl myristate

Frequency dependent experiment with gel in toluene with **4a** at a strain of 5%.

2a cyclohexane

4b Cyclohexane

S3. SEM images of xerogel samples (x10 000), bar = 1 μm

All xerogels were obtained from freeze-drying of toluene-based gels.

1a

2a (x5000, bar = 5 μm)

3a

4a

2c

4c

S4. SAXS Analysis

SAXS analysis (Xerogel of toluene and cyclohexane-based gels with 4b)

SAXS analysis (Xerogel of toluene-based gel with 3a)

SAXS analysis (Xerogel of toluene-based gel with 3a)

SAXS analysis (Xerogel of toluene-based gel with 4c)

S5. Hydrolysis experiments

Example of water-sensitivity experiments (Organogelator **2a** in toluene 12 mg mL⁻¹). Immersed in water. See butyl2a.gif file for full experiment.

Example of water-sensitivity experiments (Organogelator **2b** in toluene 16 mg mL⁻¹). Immersed in water. See oMebutyl2b.gif file for full experiment.

S6. Theoritical and computational part

Phenyl ring substituents R aglycone R₂ R_3 R₁ R₂ R₃ **R=** (n-Pr): 1, Н Н Н а (n-Bu): **2**, b CH₃ Н Н R₁ (n-Hex): 3, Н н OCH₃ С HO d CH₃ CH₃ Н ЮH (n-Oct): 4. CF₃ Н Н е

S6.1 - DFT geometric optimizations and levels of theory.

Figure S6.1: Main torsion angle on the arylboronate alkylglucosides according to the aromatic ring (R_1 , R_2 , R_3) substitution and the alkyl chain aglycones (R) (α : Car²-Car¹-B-O⁴).

Entry	Functional and basis set	Torsion angle α (°)		Distances BH ₃ C (Å)		Pof
	combinations	2b	2d	2b	2d	nel.
1	LC-BOP/cc-pVTZ [#]		65.50		2.965	[1]
2	B3LYP / 6-311+G(d,p)	1.98	52.11	3.078	2.820	[2-5]
3	B3LYP/cc-pVTZ	1.98	51.3	3.078	2.912	[6-8]
4	M062X/cc-pVTZ	4.76	46.80	3.030	2.890	[9,10]
5	ωB97XD/cc-pVTZ	2.57	54.99	3.066	2.815	[11,12]

Table S6.1: Comparison between different levels of theory to describe conformational modifications of arylboronate of alkylglucosides from chosen parameters. ([#] used on aryl-1,3,2-dioxaborinane models).

S6.2 – <u>Characteristic geometric parameters of boronate function at ωB97XD/cc-pVTZ level</u> of theory.

Entry	Figure S1 / alkyl chains (R)		1a	2a	3a	4a
A1	Torsion α (°)		2.63	2.58	2.45	2.64
A2	Distance (Å) covalent bonds B-O4 B-O6	B-Car1	1.561	1.561	1.560	1.561
		B-O4	1.369	1.369	1.369	1 .3 69
		1.369	1.369	1.369	1. 3 69	

Table S6.2.1: Dihedral angles and distances for different alkyl chains at the aglycone position.

Entry	Figure S1 / but	yl chain	2a	2b	2c	2d	2e
A1	Torsion α (°)		2.58	2.57	2.68	54.99	52.3 1
	Distance (Å) A2 covalent bonds	B-Car1	1.561	1.566	1.554	1.570	1.574
A2		B-O4	1.369	1.369	1.371	1.369	1.362
		B-O6	1.369	1.372	1.37&	1.368	1.365
	Distance (Å)	BF1					2.767
A3	non- covalent interactions	BH1		3.051		2.833	
		BH2				2.801	

Table S6.2.2: Dihedral angles and distances for different substituents (R1, R2, R3) on the arylboronate butylglucosides.

Entry	Figure S1 / octy	chain	4a	4b	4c	4d	4e
A1	Torsion α (°)		2.64	2.59	2.39	54.47	52.2
A2 D	Distance (Å)	B-Car1	1.561	1.566	1.554	1.570	1.574
	covalent bonds	B-04	1.369	1.369	1.371	1.369	1.362
		B-O6	1.369	1.372	1.371	1.368	1.365
	Distance (Å) non-covalent interactions	BF1					2.837
A3		BH1		3.044		2.834	
		BH2				2.811	

Table S6.2.3: Dihedral angles and distances for different substituents (R1, R2, R3) on the arylboronate octylglucosides.

S6.3 – Molecular orbitals of arylboronates: energy levels and representations.

In order to describe electronic effects, we compared electronic structures for all arylboronates alkylglucosides (compounds: **Cp**) extracting energy levels of molecular orbitals (**MO**, **Tables S6.3.1**, **S6.3.2**, **S6.3.3**) and visualizing representations of frontier molecular orbitals (**Figures S6.3.1**, **S6.3.2**, **S6.3.3**) as presented here at the selected level of theory ω B97XD/cc-pVTZ.

MO / Cp	1a	2a	3a	4a
LUMO+5	3.2552	3.2509	3.2343	3.1834
LUMO+4	3.0588	3.0522	3.0201	3.0016
LUMO+3	2.8599	2.8525	2.8424	2.8411
LUMO+2	2.8324	2.8280	2.8291	2.8286
LUMO+1	1.9124	1.9137	1.9156	1.9164
LUMO	1.1491	1.1507	1.1529	1.1537
НОМО	-8.7653	-8.7631	-8.7615	-8.7606
HOMO+1	-8.7832	-8.7816	-8.7797	-8.7791
HOMO+2	-9.4943	-9.4894	-9.4845	-9.4831
HOMO+3	-10.0505	-10.0461	-10.0413	-10.0390
HOMO+4	-10.2151	-10.2050	-10.1960	-10.1917
HOMO+5	-10.2798	-10.2769	-10.2736	-10.2725

Table S6.3.1: Molecular orbital energy levels for different alkyl chains at the aglycone position.

MO / Cp	2a	2b	2c	2d	2e
LUMO+5	3.2509	3.2117	3.2865	3.0204	3.1586
LUMO+4	3.0522	3.0386	3.0865	2.9801	3.0098
LUMO+3	2.8525	2.8408	2.8890	2.8299	2.8414
LUMO+2	2.8280	2.8136	2.8596	2.7170	2.7848
LUMO+1	1.9137	2.0648	1.8977	2.1537	1.3393
LUMO	1.1507	1.1511	1.4617	1.4245	0.9211
номо	-8.7631	-8.4088	-7.9315	-8.2629	-9.2146
HOMO+1	-8.7816	-8.6866	-8.8243	-8.4458	-9.3223
HOMO+2	-9.4894	-9.4929	-9.4355	-9.5098	-9.5013
HOMO+3	-10.0461	-10.0728	-10.0026	-10.0662	-10.0205
HOMO+4	-10.2050	-10.2094	-10.1609	-10.2118	-10.2238
HOMO+5	-10.2769	-10.2679	-10.1900	-10.2502	-10.3811

Table S6.3.2: Molecular orbital energy levels for a *n*-butyl chain with different substituents (R1, R2, R3).

Figure S6.3.2: Representations of the frontier molecular orbitals for arylboronates butylglucosides with different aryl substituents (R1, R2, R3).

MO / Cp	4a	4b	4c	4d	4e
LUMO+5	3.1834	3.1788	3.2133	3.0030	3.1254
LUMO+4	3.0016	2.9894	3.0316	2.9633	2.9766
LUMO+3	2.8411	2.8291	2.8852	2.8199	2.8305
LUMO+2	2.8286	2.8169	2.8544	2.7224	2.7869
LUMO+1	1.9165	2.0677	1.9048	2.1581	1.3412
LUMO	1.1537	1.1554	1.4604	1.4196	0.9233
номо	-8.7607	-8.4055	-7.9312	-8.2605	-9.2124
HOMO+1	-8.7792	-8.6834	-8.8197	-8.4436	-9.3198
HOMO+2	-9.4831	-9.4869	-9.4238	-9.5030	-9.4951
HOMO+3	-10.0390	-10.0657	-9.9846	-10.0594	-10.0143
HOMO+4	-10.1917	-10.1972	-10.1454	-10.2004	-10.2105
HOMO+5	-10.2725	-10.2643	-10.1846	-10.2431	-10.3756

Table S6.3.3: Molecular orbital energy levels for a n-octyl chain with different aryl substituents (R1, R2, R3).

Figure S3.3: Representations of the frontier molecular orbitals for arylboronates octylglucosides with different aryl substituents (R1, R2, R3).

S6.4 - Supporting references

[1] N. Shimada, S. Urata, K. Fukuhara, T. Tsuneda, K. Makino **2018**, 2.6-Bis(trifluoromethyl)phenylboronic Esters as Protective Groups for Diols: A Protection/Deprotection Protocol for Use under Mild Conditions, *Org. Lett.* **20**, 6064–6068.

[2] L. Legentil. Y. Cabezas. O. Tasseau. C. Tellier. F. Daligault. V. Ferrières **2017**, Regioselective Galactofuranosylation for the Synthesis of Disaccharide Patterns Found in Pathogenic Microorganisms, *J. Org. Chem.* **82**, 7114–7122.

[3] (a) I. D. I. Ramaite. T. van Ree **2017**, Computational Studies of Substituted Phenylboronic Acids in Common Electrolyte Solvents, *Arab. J. Sci. Eng.* **42**, 4227-4238 ; (b) A. W. Bebeda. T. van Ree **2015**, Conformational Preferences and Electrochemical Performance of Ethyleneoxy Phenylboronate Electrolyte Additives, *Arab. J. Sci. Eng.* **40**, 2841–2851.

[4] M. Tanaka, A. Nakagawa, N. Nishi, K. Iijima, R. Sawa, D. Takahashi, K. Toshima **2018**, Boronic-Acid-Catalyzed Regioselective and 1.2-cis-Stereoselective Glycosylation of Unprotected Sugar Acceptors via SNi-Type Mechanism, *J. Am. Chem. Soc.* **140**, 3644–3651.

[5] S. Wan. J. Guo. J. Kim. H. Ihee. D. Jiang **2009**, A Belt-Shaped. Blue Luminescent. and Semiconducting Covalent Organic Framework, *Angew. Chem. Int. Ed.* **47**, 8826–8830.

[6] E. Borowska, K. Durka, S. Lulinski, J. Serwatowski, K. Wozniak **2012**, On the Directing Effect of Boronate Groups in the Lithiation of Boronated Thiophenes, *Eur. J. Org. Chem.* **2012**, 2208–2218.

[7] C. Vahlberg, M. Linares, P. Norman, K. Uvdal **2012**, Phenylboronic Ester- and Phenylboronic Acid-Terminated Alkanethiols on Gold Surfaces, *J. Phys. Chem. C* **116**, 796–806.

[8] J. N. Bentley, S. A. Simoes, E. Pradhan, T. Zeng, C. B. Caputo **2021**, The synthesis, properties, and reactivity of Lewis acidic aminoboranes, *Org. Biomol. Chem.* **19**, 4796–4802.

[9] P. Pacholak. K. Gontarczyk. Radosław Kaminski. Krzysztof Durka. S. Lulinsi **2020**, Boronate Covalent and Hybrid Organic Frameworks Featuring PIII and P=O Lewis Base Sites, *Chem. Eur. J.* 26. 12758 – 12768.

[10] A. J. Cardenas-Valenzuela, J. Baldenebro-Lopez, J. A. Guerrero-Alvarez, H. Höpfl, D. Glossman-Mitnik, J. J. Campos-Gaxiolaa, A. Cruz-Enriquez **2018**, Supramolecular arrangement and photophysical properties of a dinuclear cyanophenylboronic acid ester, *Acta Cryst. C74*, 452–459.

[11] H. Li, H. Li, Q. Dai. H. Li, J.-L. Brédas **2018**, Hydrolytic Stability of Boronate Ester-Linked Covalent Organic Frameworks. *Adv. Theory Simul.* **1**, 1700015, 1-9.

[12] K. J. Donald, U. R. Gaillard, N. Walker **2022**, On Neutral Unsaturated Ouroboric Borylenes, *J. Phys. Chem. A*, **126**, 5173-5185.

S7. Gelation data in Hansen space

Graph were plotted following the methodology of Bouteiller *et al. Soft Matter* **2018**, *14*, 4805-4809. doi:10.1039/C8SM00562A.

Gelation data in Hansen space for 2a

Gelation data in Hansen space for 4a

S8. 1H NMR at variable temperature

S8.1. Variable temperature ¹H NMR of gel in toluene-d8 with **2a** (25°C, 30°C, 40°C, 50°C, 60°C, 70°C, 80°C, from bottom to top).

S8.2. Variable temperature ¹H NMR of gel in toluene-d8 with **3a** (25°C, 30°C, 40°C, 50°C, 60°C, 70°C, 80°C, from bottom to top).

S8.3. Variable temperature ¹H NMR of gel in toluene-d8 with **4a** (25°C, 30°C, 40°C, 50°C, 60°C, 70°C, 80°C, from bottom to top).