
Technical Appendix

1.  Norm𝑙2

Consider the case where a physical observable , such as the stress of a material, is measured in an 𝑓𝑜𝑏𝑠

experiment.  This observable can then be modeled with a governing equation  which takes a set of 𝑓

parameters  as its arguments.  For example, the stress  might be measured and described with an 𝜃 𝜎𝑜𝑏𝑠

elastic governing equation which takes the Young’s Modulus of the material  as its argument, such as 𝐸

.  As the goal of the observation of  is to obtain the  which best explains the data (such as the 𝜎(𝐸) 𝑓𝑜𝑏𝑠 𝜃

best fitting Young’s Modulus), we seek to minimize the error between the model prediction  and the 𝑓

data .  Such a problem can be solved as an optimization problem, where a distance metric is used to 𝑓𝑜𝑏𝑠

define the distance, or error, between the model prediction and the data.  The most common distance 

metrics are the  norm (Manhattan distance) and the  norm (Euclidian distance, also referred to as the 𝑙1 𝑙2

squared error).  We use the  norm as it is the most commonly used in these types of optimization 𝑙2

problems in the AFM community.  Also, the  norm provides more general solutions, thus avoiding 𝑙2

overfitting – although it can suffer performance issues when working with data with significant outliers1.  

As the  norm sums over all the observations (typically instances of time) in the data, it can be thought of 𝑙2

as a function of the parameter set .𝜃

𝑙2(𝜃) = ∑
𝑛

[𝑓(𝑛, 𝜃) ‒ 𝑓𝑜𝑏𝑠(𝑛)]2
(S1)

2. Log Likelihood
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In realistic conditions, the observed data  will have some experimental noise.  Here, we treat the noise 𝑓𝑜𝑏𝑠

as a Gaussian process with a known standard deviation .  Then, for a single sample  of the data, we can 𝑠 𝑛0

imagine the probability of correctly modeling  with the parameter set  which is given as 𝑓𝑜𝑏𝑠 𝜃

.  As the noise is generated by a Gaussian distribution, this probability will follow the same 𝑃(𝑓𝑜𝑏𝑠(𝑛0)│𝜃)

form.  Then, as we previously sought to minimize the  norm with respect to , we can now seek to 𝑙2 𝜃

maximize this probability, at least for the single sample 1 .𝑛0

𝑃(𝑓𝑜𝑏𝑠(𝑛0)│𝜃) =
1

2𝜋𝑠2
𝑒

‒
(𝑓(𝑛0,𝜃) ‒ 𝑓𝑜𝑏𝑠(𝑛0))2

2𝑠2 (S2)

Then, the probability of correctly modeling the entire dataset  will be given as the joint 𝑃(𝑓𝑜𝑏𝑠│𝜃)

probability distributions for every sample .  The resulting probability distribution can be significantly 𝑛

simplified if we assume that the distributions for each instant in time are independent and identically 

distributed (i.i.d.) which results in a product of the individual distributions2–5.

𝑃(𝑓𝑜𝑏𝑠│𝜃) = 𝑃(𝑓𝑜𝑏𝑠(1) ∩ 𝑓𝑜𝑏𝑠(2) ∩ …𝑓𝑜𝑏𝑠(𝑁)│𝜃) =
𝑁

∏
𝑛

𝑃(𝑓𝑜𝑏𝑠(𝑛)│𝜃) (S3)

Again, this probability distribution governs the probability, or likelihood, that the model has correctly 

described the data.  If the model perfectly describes the data, then this distribution will be maximized.  In 

this case, it is highly likely that the model describes the data.  Hence, this is commonly referred to as the 

likelihood.  A far more commonly used quantity is the log likelihood , which is given by the 𝐿(𝑓𝑜𝑏𝑠│𝜃)

logarithm of the likelihood distribution.  The product in the likelihood turns into a sum in the log likelihood, 

thus greatly simplifying the math when working with the quantity.  

𝐿(𝑓𝑜𝑏𝑠│𝜃) = ∑
𝑛

‒
log (2𝜋𝑠2)

2
‒

(𝑓(𝑛, 𝜃) ‒ 𝑓𝑜𝑏𝑠(𝑛))2

2𝑠2 (S4)



Here, the connection between the  norm and the log likelihood become obvious as seen in eqn. S5.  We 𝑙2

can now clearly see that minimizing the  norm is equivalent to maximizing the log likelihood.  As the 𝑙2

logarithm is a monotonically increasing function, maximizing the log likelihood is then also equivalent to 

maximizing the likelihood.  Thus, the  that either minimizes the  norm or maximizes the likelihood / log 𝜃 𝑙2

likelihood is commonly referred to as the maximum likelihood estimate (MLE) .𝜃𝑀𝐿𝐸

𝐿(𝑓𝑜𝑏𝑠│𝜃) =‒
𝑙2(𝜃)

2𝑠2
‒ ∑

𝑛

log (2𝜋𝑠2)
2 (S5)

3. Fisher Information, Observed Fisher Information, D-Optimality Criterion

Then, as we seek to perform experiments so that we obtain an accurate estimate of  for the physical 𝜃𝑀𝐿𝐸

observable , we might imagine that some data might be more useful than others.  For example, if the 𝑓𝑜𝑏𝑠

data is heavily polluted with noise, determining  may be impossible.  Thus, to measure the quality of 𝜃𝑀𝐿𝐸

a dataset for determining , we turn to information theory.  Here, we will derive the Fisher Information 𝜃𝑀𝐿𝐸

and Observed Fisher Information using the results of the previous section.

To begin, we recall the hypothetical model  for the data .  First, consider the case where the model 𝑓 𝑓𝑜𝑏𝑠

 is entirely incapable of describing the features of .  Here, one might have selected an entirely 𝑓 𝑓𝑜𝑏𝑠

inappropriate model for the analysis!  For instance, one could be attempting to model the data of the 

stress of an elastic material (with Young’s Modulus ) under a constant strain input  by using 𝐸 𝜀(𝑡 ≥ 0) = 𝜀0

a viscous fluid model (with viscosity  as the model parameter).  Obviously in this ridiculous hypothetical 𝜇

case, the model and the data would never match, thus the log likelihood would be invariant under changes 

in the viscosity as seen in eqn.’s S6-S8.  Furthermore, one could determine that the data does not contain 

any information about the viscosity of the material.



𝐿(𝜎𝑜𝑏𝑠│𝜇) = ∑
𝑛

‒
log (2𝜋𝑠2)

2
‒

(𝜎(𝑛, 𝜇) ‒ 𝜎𝑜𝑏𝑠(𝑛))2

2𝑠2 (S6)

𝐿(𝜎𝑜𝑏𝑠│𝜇) = ∑
𝑛

‒
log (2𝜋𝑠2)

2
‒

(𝜇�̇�(𝑛) ‒ 𝐸𝜀(𝑛))2

2𝑠2 (S7)

𝐿(𝜎𝑜𝑏𝑠│𝜇) = ∑
𝑛

‒
log (2𝜋𝑠2)

2
‒

𝜀2
0𝐸2

2𝑠2 (S8)

As  compares the model to the data, we see that if  (as in the previous example) 𝐿(𝑓𝑜𝑏𝑠│𝜃) ∇𝜃𝐿(𝑓𝑜𝑏𝑠│𝜃) = 0

then not only is the model incapable of describing the data, but also the data does not provide any 

information for determining .  Conversely, if a change in  results in a significant change in , 𝜃𝑀𝐿𝐸 𝜃 𝐿(𝑓𝑜𝑏𝑠│𝜃)

then the data provides a similarly significant amount of information about .  Thus, we see that the 𝜃𝑀𝐿𝐸

sensitivity of the log likelihood to changes in  serves as a way to measure the amount of information that 𝜃

the dataset contains about .  We can mathematically define this sensitivity as the magnitude of the 𝜃

derivative of the log likelihood with respect to .  This quantity is referred to as the Fisher Information 𝜃

 as seen in eqn. S92–6.  Here, the square is used to take the magnitude of the gradient.  We could have 𝐼(𝜃)

just as well taken the absolute value; however, this would have resulted in a non-differentiable function.  

Finally, the expected value  is taken as the log likelihood is a probability distribution.𝐸[ ]

𝐼(𝜃) = 𝐸[(∇𝜃𝐿(𝑓𝑜𝑏𝑠│𝜃))2] (S9)

Though straightforward, this definition is not practical as it explicitly depends on knowledge of the true 

parameter set, which is unknown.  Hence, calculating the expected value is impossible.  Instead, the 

Observed Fisher Information  can be used as an estimate for the true Fisher Information2–4.  𝐽(𝜃𝑀𝐿𝐸)

𝐽(𝜃𝑀𝐿𝐸)𝑖,𝑗 = [ ‒ ∂𝜃𝑖
∂𝜃𝑗

𝐿(𝑓𝑜𝑏𝑠│𝜃)]𝜃 = 𝜃𝑀𝐿𝐸 (S10)

Here, the Observed Fisher Information calculates the curvature of the log-likelihood with respect to the 

parameter set, evaluated at the maximum likelihood estimate .  If the log likelihood is sharply defined 𝜃𝑀𝐿𝐸



at the maximum likelihood estimate, then changes in the  will result in significant changes in , 𝜃 𝐿(𝑓𝑜𝑏𝑠│𝜃)

and hence, the Observed Fisher Information is large.  In general,  defines the matrix elements for 𝐽(𝜃𝑀𝐿𝐸)𝑖,𝑗

a matrix of size  where  is the dimension of .  Various elements of  can be used to 𝑚 × 𝑚 𝑚 𝜃 𝐽(𝜃𝑀𝐿𝐸)𝑖,𝑗

quantify information, here we consider the D-optimality criterion, defined as the determinant of , 𝐽(𝜃𝑀𝐿𝐸)

for consistency with the study of the characteristics of step-like experiments2,4.  While several technical 

details have been left out in obtaining  from , further details can be found elsewhere4–8.𝐽(𝜃𝑀𝐿𝐸)𝑖,𝑗 𝐼(𝜃)

4. Observed Fisher Information for Generalized Maxwell Model

The elements of  for a generalized Maxwell model with  relaxation times can be calculated 𝐽(𝜃𝑀𝐿𝐸)𝑖,𝑗 𝑁

following eqn. S10 as seen below.

𝐽(𝐺𝑒𝑀𝐿𝐸
,𝐺1𝑀𝐿𝐸

,…𝜏𝑁𝑀𝐿𝐸
) = [ ‒ [ ∂ 2

𝐺𝑒
∂𝐺𝑒

∂𝐺1
⋯ ∂𝐺𝑒

∂𝜏𝑁
∂𝐺1

∂𝐺𝑒
∂ 2

𝐺1
⋮

⋮ ⋱ ⋮
∂𝜏𝑁

∂𝐺𝑒
⋯ ⋯ ∂ 2

𝜏𝑁

] 𝐿(𝜎𝑜𝑏𝑠│𝐺𝑒,𝐺1,…𝜏𝑁)]𝐺𝑒𝑀𝐿𝐸
,𝐺1𝑀𝐿𝐸

,…𝜏𝑁𝑀𝐿𝐸
(S11)

5. Mechanical Models

The constitutive equation for linear viscoelasticity is given as an arbitrary order differential equation which 

relates the stress and the strain of the material.  Such an equation is generally solved by the Boltzmann 

integral which relates the stress  to a convolution of the viscoelastic modulus  and the strain 9–13 . 𝜎 𝑄 𝜀

 In these types of equations, the modulus is referred to as the kernel of the integral and represents the 

impulse response of the material such that (

).𝑄(𝑡) = 𝑄(𝑡) ∗ 𝛿(𝑡)

𝜎(𝑡) = ∫𝑑𝑢 𝑄(𝑡 ‒ 𝑢)𝜀(𝑢) (S12)



Then, using the models derived by Lee and Radok, this equation can be equivalently obtained in terms of 

force  and indentation  between the viscoelastic half-space and a rigid indenter of various geometries 𝑓 ℎ

as seen in eqn. S1314.  The parameters  and  depend on the geometry of the indenter and can be found 𝛼 𝛽

in other sources15–17.

𝑓(𝑡)
𝛼

= ∫𝑑𝑢 𝑄(𝑡 ‒ 𝑢)ℎ𝛽(𝑢) (S13)

6. Modified Fourier Transform

Recently, the Z-transform (ZT) was used to directly obtain  from force-indentation data18,19.  The ZT can 𝑄

be thought of as a discrete analog to the Laplace transform.  Recall that the Fourier transform of a function 

can be directly obtained from its Laplace transform by setting the complex Laplace domain variable 

.  Here, the discrete Fourier transform (DFT) can similarly be obtained from the ZT, by setting 𝑠 = 𝑖𝜔

18,19 .  In both of these cases, the real part of the complex variable is removed.  If the real part 𝑧 = 𝑖𝜔

were kept, the result would give the modified Fourier transform (MFT) (in the case of ) and the 𝑠 = 𝑎 + 𝑖𝜔

modified discrete Fourier transform (MDFT) (in the case of ).  As both the Z and Laplace 𝑧 = ln (𝑟0) + 𝑖𝜔

transforms deal with the entirety of the complex plane, the modified transforms restrict this to a single 

line and circular contour, in the continuous and discrete cases, respectively.  Thus, it is far more practical 

to use the MDFT to analyze the discrete force-indentation data. 

𝑇𝐷𝐹𝑇{𝑓[𝑛]}(𝜔) = ∑
𝑛

𝑓[𝑛]𝑒 ‒ 𝑖𝜔𝑛
(S14)

𝑇𝑍𝑇{𝑓[𝑛]}(𝑧) = 𝑇𝑍𝑇{𝑓[𝑛]}(𝜔, 𝑟) = ∑
𝑛

𝑓[𝑛]𝑧 ‒ 𝑛 = ∑
𝑛

𝑓[𝑛]𝑟 ‒ 𝑛𝑒 ‒ 𝑖𝜔𝑛
(S15)

𝑇𝑀𝐷𝐹𝑇{𝑓[𝑛]}(𝜔) = ∑
𝑛

𝑓[𝑛]𝑟 ‒ 𝑛
0 𝑒 ‒ 𝑖𝜔𝑛 = 𝑇𝐷𝐹𝑇{𝑓[𝑛]𝑟 ‒ 𝑛

0 }(𝜔) (S16)

By applying the MDFT to eqn. S13, the convolution of  and  turns into a multiplication of their 𝑄 ℎ𝛽

transforms.



𝑇𝑀𝐷𝐹𝑇{𝑓[𝑛]
𝛼 }(𝜔) = 𝑇𝑀𝐷𝐹𝑇{𝑄[𝑛]}(𝜔) 𝑇𝑀𝐷𝐹𝑇{ℎ𝛽[𝑛]}(𝜔) = 𝑄(𝜔) 𝑇𝑀𝐷𝐹𝑇{ℎ𝛽[𝑛]}(𝜔) (S17)

This multiplication can then be directly manipulated to obtain  from the force-indentation data as seen 𝑄

in eqn. S1819.  Of course, such a technique is not restricted to force-indentation data.  The general 

definition of the Boltzmann integral can also be used, thus obtaining  from stress-strain data.𝑄

𝑄(𝜔) =
𝑇𝑀𝐷𝐹𝑇{𝑓[𝑛]

𝛼 }(𝜔)

𝑇𝑀𝐷𝐹𝑇{ℎ𝛽[𝑛]}(𝜔)
(S18)

𝑄(𝜔) =
𝑇𝑀𝐷𝐹𝑇{𝜎[𝑛]}(𝜔)

𝑇𝑀𝐷𝐹𝑇{𝜀[𝑛]}(𝜔) (S19)

While using the DFT may seem to be more convenient, doing so would result in an inaccurate 

characterization as the force-indentation data is numerically unbounded and does not represent a 

periodic signal18,19.  The MDFT can be calculated from the DFT as seen in eqn. S16, though it should be 

noted that careful selection of  is required to avoid errors in this inversion process19.  It is typical for 𝑟0

researchers to seek the storage and loss moduli of a material as the end goal of its viscoelastic 

characterization.  These quantities are defined as the real and imaginary parts of the Fourier spectrum of 

.  As the MDFT operates in the modified Fourier domain, the correspondence between the real and 𝑄

imaginary parts of  obtained through this method do not exactly correspond to the real storage and 𝑄(𝜔)

loss moduli.  Though they often are quite close, inaccuracies compound for excessively small and large 

values of 18 .𝑟0

7. Dimensionless Model Derivation: Time Domain

The generalized Maxwell model is one of the simplest linear viscoelastic models that is capable of 

representing the canonical rheological behaviors of creep and stress relaxation.  For these reasons, this 

model is a popular choice among those seeking to characterize viscoelastic material using force-

indentation or stress-strain experiments.



Figure 1: The Standard Linear Solid (SLS) model (seen on the left) is obtained as a special case of the 

generalized Maxwell model (seen on the right), where the number of relaxation times is set to 1.

Seen in Fig. 1, the generalized Maxwell model is comprised of a series of parallel ‘Maxwell arms’ made of 

an elastic spring with a modulus  in series with a viscous dashpot with a viscosity .  The rate at which 𝐺 𝜇

the stress in the  Maxwell arm is governed by the ratio of  and is referred to as the relaxation time 𝑛𝑡ℎ 𝜇𝑛/𝐺𝑛

.  The impulse response of such a material can be found from solving the stress-strain equation for the 𝜏𝑛

linear time invariant (LTI) system and is given as eqn. S209–11,13.

𝑄(𝑡) = 𝐺𝑒𝛿(𝑡) +
𝑁

∑
𝑛

[𝐺𝑛𝛿(𝑡) ‒
𝐺𝑛

𝜏𝑛
𝑒

‒
𝑡

𝜏𝑛] (S20)

The modified Fourier domain correspondence of  for this model can be obtained by solving the same 𝑄

equation using discrete signals and difference equations which results in eqn. 2118,19.  It is an interesting 

note that in the limit of small , eqn. S21 approaches the equivalent continuous Fourier domain 𝜔

correspondence.



𝑄(𝜔) = 𝐺𝑒 +
𝑁

∑
𝑛 [𝐺𝑛 ‒

𝐺𝑛

1 +
𝜏𝑛

∆𝑡(1 ‒
𝑒 ‒ 𝑖𝜔

𝑟0
)] (S21)

8. Derivation of Dimensionless Models

Due to the similarity in the structures of eqn.’s S12 and S13, we consider the quantities  and  to be 𝑓/𝛼 ℎ𝛽

equivalent to stress and strain respectively.  While the indentation  in typical AFM force-indentation ℎ

experiments typically does not perfectly follow a line, the ‘strain’, given as , typically is closely linear as ℎ𝛽

seen in Fig. 2.

Figure 2: Indentation  and ‘strain’  as functions of time obtained from an AFM experiment with a ℎ ℎ𝛽

spherical probe ( ).𝛽 = 3/2

Then, assuming the ‘strain’ of a force-indentation experiment follows a linear function in time, we can 

write.

ℎ𝛽(𝑡) = 𝜀0 𝑡
(S22)

Substituting this linearized strain as well as the  of a generalized Maxwell model, we can obtain the 𝑄(𝑡)

behavior of the stress / force for our idealized force-indentation curves.



 

𝜎(𝑡) =
𝑓(𝑡)

𝛼
= ∫𝑑𝑢 (𝐺𝑒𝛿(𝑡 ‒ 𝑢) +

𝑁

∑
𝑛

[𝐺𝑛𝛿(𝑡) ‒
𝐺𝑛

𝜏𝑛
𝑒

‒
𝑡 ‒ 𝑢

𝜏𝑛 ])𝜀0 𝑢 (S23)

Which can be solved exactly to yield eqn. S24.

𝜎(𝑡) =
𝑓(𝑡)

𝛼
= 𝜀0(𝐺𝑒𝑡 +

𝑁

∑
𝑛

𝐺𝑛𝜏𝑛(1 ‒ 𝑒
‒

𝑡
𝜏𝑛)) (S24)

To isolate the behavior of the model parameters with respect to the experimental conditions, we can 

substitute the following normalizations where  is the length of the experiment in time.

�̃�𝑛 =
𝐺𝑛

𝐺𝑒 + ∑
𝑛

𝐺𝑛
(S25)

�̃�𝑛 =
𝜏𝑛 (S26)

�̃� =
𝑡

(S27)

Performing these substitutions and further normalizing by  yields the following equation which is  𝜀0

essential in obtaining the results in the main paper.

�̃�(�̃�) =
𝑓(�̃�)

𝛼 𝜀0 𝐺𝑔 
= �̃� +

𝑁

∑
𝑛

�̃�𝑛�̃�𝑛(1 ‒ 𝑒
‒

�̃�
�̃�𝑛) ‒ �̃�𝑛�̃� (S28)

A similar approach can be taken to obtain the dimensionless form of .𝑄(𝜔)



�̃�(𝜔) =
𝑄(𝜔)

𝐺𝑔
= 1 ‒

𝑁

∑
𝑛

�̃�𝑛

1 +
�̃�𝑛

∆𝑡(1 ‒
𝑒 ‒ 𝑖𝜔

1.001) (S29)

Note that by returning to eqn. S24, it is evident that the timescales  and  are both scaled by the strain 𝑡 𝜏𝑛

rate .  As we mention in the main paper, this results in an equivalent nondimensional form of eqn. S28 𝜀0

where the dimensionless timescales are given by eqn.’s S26a and S27a.  Interpreting these 

nondimensional parameters allows us to equivalently obtain an upper bound for obtainable relaxation 

times in terms of the strain rate.  Specifically, to keep the dimensionless time constant  in the �̃�𝑛

information rich regime of the time domain experiments ( ), one requires that  thus �̃�𝑛 < 0.1 𝜏𝑛 < 1/10𝜀0

allowing the specification of an optimal strain rate for the detection of specific relaxation times.

�̃�𝑛 = 𝜏𝑛𝜀0 (S26a)

�̃� = 𝑡𝜀0 (S27a)

9. Dimensionless Model Parameters

As the arm moduli  have been normalized by the instantaneous modulus ( ), they can �̃�𝑛

𝐺𝑔 = 𝐺𝑒 + ∑
𝑛

𝐺𝑛

obtain a minimum value of 0 which of course corresponds to a modulus of 0.  The sum of all of the ’s �̃�𝑛

can be, at most, 1 which corresponds to a material with , which is often interpreted as a fluid (i.e. 𝐺𝑒 = 0

the material will continue to relax its stress until it reaches a state of zero stress)11.  The normalized 

relaxation times  range between 0 and , though we are mostly interested in their behavior within the �̃�𝑛 ∞

observable timeframe of the experiment.  Hence, we typically only consider ’s between 0 and 1.  Similar �̃�𝑛



to the relaxation times, the time axis  has been normalized by the experiment length, thus restricting  �̃� �̃�

to be between 0 and 1 with 1 corresponding to the end of the experiment.

10. Surfaces of the  Norm and Maximum Log Likelihood for the Dimensionless Models𝑙2

The  norm for the normalized time (eqn. S28) and frequency (eqn. S29) domain models can now be 𝑙2

determined.  Again, the  norm is a function of the model parameters  and the successful identification 𝑙2 𝜃

of  from an optimization algorithm depends on its structure.𝜃

𝑙2
𝑡(𝜃) = ∑̃

𝑡

[�̃�(�̃�,𝜃) ‒ �̃�𝑜𝑏𝑠(�̃�)]2
(S30)

𝑙2
𝜔(𝜃) = ∑

𝜔
[�̃�(𝜔,𝜃) ‒ �̃�𝑜𝑏𝑠(𝜔)]2

(S31)

We now perform parameter sweeps for these norms over a range of parameters for a model with a single 

relaxation time.  In both cases,   and  are both varied between 0 and 1 and the resulting model �̃�1 �̃�1

predictions (  and ) are compared to a simulated dataset with the parameters �̃�(�̃�,�̃�1,�̃�1) �̃�(𝜔,�̃�1,�̃�1)

.  The resulting surfaces are plotted below.�̃�𝑠𝑖𝑚,�̃�𝑠𝑖𝑚

In Fig. 3, we have  with these ‘true’ values marked with an X in the center of these �̃�𝑠𝑖𝑚 = �̃�𝑠𝑖𝑚 = 0.5

surfaces.  The left column of plots shows the surfaces of  with an increasingly large amount of noise 𝑙2
𝑡

added to the simulated data.  In the right column, the  surfaces are shown, with the same increasing 𝑙2
𝜔

noise.  As discussed in the main paper, the time domain contains a valley like formation with values below 

the machine precision level, thus indicating that optimization will likely fail in these areas.  As the standard 

deviation of the noise increases, so too does the size of the valley.  In comparison, the minimum in the 

frequency domain remains well defined even in the presence of considerable noise.



Figure 3: Surfaces of  and  for a range of parameter space.  Compared to simulated dataset (𝑙2
𝑡 𝑙2

𝜔

) with an increasing amount of noise.�̃�𝑠𝑖𝑚 = �̃�𝑠𝑖𝑚 = 0.5

Next, we perform a similar calculation; however, the dataset is now simulated with a relaxation time 

.  As we have shown in the main paper, relaxation times that are less than  are most readily �̃�𝑠𝑖𝑚 = 0.1 /10



obtained from the time domain.  As expected, the size of the valley in  is significantly reduced when 𝑙2
𝑡

compared to the previous case shown in Fig. 4.  Furthermore, the expansion of the valley in  is further 𝑙2
𝑡

restricted in this case – though it still indicates there will be considerable problems when optimizing.



Figure 4: Surfaces of  and  for a range of parameter space.  Compared to simulated dataset (𝑙2
𝑡 𝑙2

𝜔

) with an increasing amount of noise.�̃�𝑠𝑖𝑚 = 0.5,  �̃�𝑠𝑖𝑚 = 0.1

As done in the main paper, we can further contrast these two approaches by using the log likelihood.  

Here, we seek to describe a material with two relaxation times by using a model with a single relaxation 

time (SLS model).  In the two figures below, we provide the normalized log likelihood (  and 𝐿(�̃�𝑜𝑏𝑠│𝜃𝑀𝐿𝐸)

) for the maximum likelihood SLS estimate of various parameters (  and ) of the 𝐿(�̃�𝑜𝑏𝑠│𝜃𝑀𝐿𝐸) �̃�1, �̃�2 �̃�1, �̃�2

two arm model in both the time (Fig. 5) and frequency (Fig. 6) domains.



Figure 5: Values of the normalized maximum log likelihood estimate for an SLS model describing a material 

with two relaxation times  and two moduli  in the time domain.  Moving from left to right, the �̃�1, �̃�2 �̃�1, �̃�2

columns correspond to data with noise of an increasing magnitude .  Each row corresponds to sets of 𝑠

values of  and  with the difference between  and  increasing from top to bottom.�̃�1, �̃�2 �̃�1, �̃�2 �̃�1 �̃�2



Figure 6: Values of the normalized maximum log likelihood estimate for an SLS model describing a material 

with two relaxation times  and two moduli  in the frequency domain.  Moving from left to right, �̃�1, �̃�2 �̃�1, �̃�2

the columns correspond to data with noise of an increasing magnitude .  Each row corresponds to sets 𝑠

of values of  and  with the difference between  and  increasing from top to bottom.�̃�1, �̃�2 �̃�1, �̃�2 �̃�1 �̃�2



In both cases,  and  form peaks where the values of  and  overlap.  As 𝐿(�̃�𝑜𝑏𝑠│𝜃𝑀𝐿𝐸) 𝐿(�̃�𝑜𝑏𝑠│𝜃𝑀𝐿𝐸) �̃�1 �̃�2

discussed in the main paper, this is because as the two relaxation times come closer together, their 

behavior can be better approximated as a single relaxation time.  Hence, for values of  and  that are �̃�1 �̃�2

close together,  and  will be maximized.  With this in mind, we can determine 𝐿(�̃�𝑜𝑏𝑠│𝜃𝑀𝐿𝐸) 𝐿(�̃�𝑜𝑏𝑠│𝜃𝑀𝐿𝐸)

that the superior method of characterization will be the one which offers the greatest distinction between 

relaxation times.  We can see that as the width of the peaks in  are narrower than 𝐿(�̃�𝑜𝑏𝑠│𝜃𝑀𝐿𝐸)

, the frequency domain offers a greater sensitivity for resolving multiple relaxation times 𝐿(�̃�𝑜𝑏𝑠│𝜃𝑀𝐿𝐸)

from force-indentation experiments.  A similar conclusion can be drawn from the decreased amplitude in 

 as compared to .𝐿(�̃�𝑜𝑏𝑠│𝜃𝑀𝐿𝐸) 𝐿(�̃�𝑜𝑏𝑠│𝜃𝑀𝐿𝐸)

When the modulus associated with a relaxation time is decreased, the effect of that relaxation time is 

significantly reduced.  In comparing Fig. 5a to 5m, for example, this effect is made obvious:  𝐿(�̃�𝑜𝑏𝑠│𝜃𝑀𝐿𝐸)

is effectively flattened for the case when  is about an order of magnitude greater than .  Thus, �̃�1 �̃�2

determining s when s for  and  is as difficult as determining s �̃�2 = 0.1 �̃�1 = 0.001 �̃�1 = 0.9 �̃�2 = 0.1 �̃�2 = 0.01

when s for .  However, these issues are significantly reduced in the frequency �̃�1 = 0.001 �̃�1 = �̃�2 = 0.5

domain as seen in Fig. 6a and 6m, for example.

11. Discrete Convolution Error

It is uncommon for researchers to assume that the indentation in an AFM experiment follows a prescribed 

functional form as we have done in the derivation of the linearized model.  In practice, the convolution 

definition given in eqn. S13 is used more frequently as it accommodates force and indentation data of 

almost any arbitrary form, without the need for assuming one as we have done here.  However, as the 

experimental data is inherently discretized, one must use a discrete convolution operation rather than a 

continuous one.  In this case, such an approximation is only valid when the convolved functions are band 



limited (i.e. their frequency components lie within a finite region of the Fourier domain)20.  Of course, one 

may be able to perform experiments which use band limited strain/indentation signals such as sines or 

cosines; however, most signal shapes used in force-indentation experiments are not exactly so.  Though, 

by admission, the family of ramp-like signals that are more commonly used in these experiments 

approximately satisfy this criterion due to their rapid attenuation in the frequency domain.  However, this 

issue still remains for the viscoelastic modulus.  In particular, band limited moduli may not correspond to 

physical behaviors of materials.

To address this question as generally as possible, we should first consider the general shape of the 

viscoelastic modulus in the frequency domain.  The behavior of such functions near the origin either starts 

from zero, corresponding to a fluid, or a finite nonzero value, corresponding to a solid.  Following this, the 

function tends towards some nonzero value at high frequency.  This general behavior can be represented 

as a superposition of a positive constant (DC shift), representing the immediate response of the material, 

with some function of frequency, representing the transient response of the material.  Indeed, such 

decompositions are commonplace in the general theory of linear viscoelasticity12,13.  In this case, the 

frequency components associated with the positive constant result in a Dirac delta function in the time 

domain, which is analytically equivalent to a scaling of the strain\indentation input with the positive 

constant.  The remaining transient portion of the modulus must then be convolved with the input which 

is where the issue of band limiting arises.

To further assess these issues, we must assume that the transient behavior follows that of a generalized 

Maxwell model.  For this case, the constitutive equation is again decomposed into immediate and 

transient components as discussed above which results in eqn. S33.  A brief inspection of the spectrum of 

 in Fig. 5 reveals that it has a decaying behavior as the magnitude of the frequency increases.  Thus, 𝑒
‒ 𝑡/𝜏𝑛

we may posit that approximating  as being band limited may not introduce significant errors in the 𝑒
‒ 𝑡/𝜏𝑛



calculation of the convolution.  To fully determine if this is true, we first can calculate the spectrum of 

 given as  as seen below.𝑒
‒ 𝑡/𝜏𝑛 𝑞

𝑓(𝑡)
𝛼

= ∫𝑑𝑢 (𝐺𝑒𝛿(𝑡 ‒ 𝑢) +
𝑁

∑
𝑛

[𝐺𝑛𝛿(𝑡) ‒
𝐺𝑛

𝜏𝑛
𝑒

‒
𝑡 ‒ 𝑢

𝜏𝑛 ])ℎ𝛽(𝑢) (S32)

𝑓(𝑡)
𝛼

= (𝐺𝑒 +
𝑁

∑
𝑛

𝐺𝑛)ℎ𝛽(𝑡) ‒
𝑁

∑
𝑛

𝐺𝑛

𝜏𝑛
∫𝑑𝑢 𝑒

‒
𝑡 ‒ 𝑢

𝜏𝑛 ℎ𝛽(𝑢) (S33)

𝑞(𝜔) =
1

1 + 𝑖𝜔𝜏
(S34)

Figure 7: Three force-indentation curves calculated exactly (shown in grey) and approximately using the 

discrete convolution (shown in color).  The percent of the total energy of the spectrum contained in the 

Nyquist band limits is included to demonstrate how much energy is needed to be captured in order for 

this approximation to be valid.  The magnitudes of the spectra for these three force-indentation curves 



are also included, demonstrating that larger relaxation times relative to the sampling timestep cause the 

spectra to be better approximated as band limited.

As band limited spectra have their entire energy contained within a finite frequency range, we can assess 

the ability of  to be approximated as a band limited spectrum by looking at the amount of its energy that 𝑞

is contained in the Nyquist frequency bands (  to ).  For  to be determined to be ‒ 1/ 2∆𝑡 1/ 2∆𝑡 𝑞

approximately band limited, it should then have most of its energy contained in this range.  To begin, we 

first determine the energy of .𝑞

|𝑞(𝜔)| =
1

1 + 𝜔2𝜏2 (S35)

Then, assuming that the spacing between the frequencies are sufficiently small (i.e., the experiment is 

sufficiently long), the total energy contained between the frequencies  and  can be obtained as an ‒ 𝜔𝑛 𝜔𝑛

integral of .|𝑞(𝜔)|

𝐸(𝜔𝑛) =

𝜔𝑛

∫
‒ 𝜔𝑛

𝑑𝜔
1

1 + 𝜔2𝜏2 (S36)

As previously mentioned, a band limited signal should have 100% of its energy contained in a given 

frequency range, say  and .  Thus, the ratio  of the energy in this frequency range to the energy in ‒ 𝜔𝑛 𝜔𝑛 𝜆

all the frequencies must be 1, or as close to it as possible for the approximate case.

𝜆 =
𝐸(𝜔𝑛)
𝐸(∞)

=
𝐸( 1

2∆𝑡)
𝐸(∞)

(S37)



These energies can then be calculated from the integral in eqn. S36.

𝜆 =
2atan ( 𝜏

2∆𝑡)
𝜋

(S38)

Finally, to maximize , we obtain an inequality between  and  which gives the final eqn. S39.𝜆 𝜏 ∆𝑡

𝜏 > 2∆t tan (𝜆𝜋
2 )

(S39)

As demonstrated in Fig. 5, the convolution works best for values of  which corresponds to roughly 𝜆 > 0.999

.  Therefore, when using the convolution definition of the generalized Maxwell model, one can 𝜏 > 1000 ∆𝑡

only use relaxation times that are thousands of times larger than the sampling timestep.  Thus, an even 

more restrictive lower limit can be placed on the relaxation times that can be determined in the time 

domain if the convolution definition is used. 

12. Noise Carried Through Spectral Inversion with MDFT

As mentioned in Section 6, the viscoelastic modulus of a material can be directly obtained from force-

indentation indentation by applying the modified discrete Fourier transform (MDFT) to the data.  Once 

transformed, the force and indentation spectra can be divided to obtain the modulus; however, this 

division can magnify the effects of even the slightest noise in the data.  For example, Fig. 6 shows the 

spectra of the force and indentation from an AFM experiment.  Although the individual spectra appear to 

be free from noise, the resulting viscoelastic modulus is severely distorted at high frequencies. 



Figure 8: Spectra of a) force and b) indentation data from an AFM experiment obtained from the MDFT 

as described in Section 6.  Though the individual spectra seem noticeably free from noise, dividing them 

to obtain the c) viscoelastic modulus magnifies the high frequency noise.

To understand how this noise manifests in the frequency domain, we use the more generalized stress-

strain relationship from eqn. S12.  Here, consider measuring the stress and strain of a material in an 

experiment where the data is polluted with noise  which is generated by a mean zero Gaussian process 𝑥

with a standard deviation .  The resulting stress-strain equation will be given as eqn. S40. 𝑠

𝜎(𝑡) + 𝑥(𝑡) = ∫𝑑𝑢 𝑄(𝑡 ‒ 𝑢) (𝜀(𝑢) + 𝑥(𝑢))
(S40)

As the data has been polluted with noise, the value of  obtained from inverting eqn. S40 will be incorrect, 𝑄

hence we denote it as .  The result can be seen in eqn. S41 where the notation  is used to denote the 𝑄' 𝑓𝜔

MDFT of some signal .𝑓



𝜎𝜔 + 𝑥𝜔 = 𝑄𝜔(𝜀𝜔 + 𝑥𝜔)
(S41)

𝑄'𝜔 =
𝜎𝜔 + 𝑥𝜔

𝜀𝜔 + 𝑥𝜔

(S42)

However, the resulting equation is invalid as the spectrum of a random process such as  is undefined.  𝑥

Instead, we will use the power spectrum of 21 .  𝑄'𝜔

|𝑄 '
𝜔|2 =

𝜎𝜔 + 𝑥𝜔

𝜀𝜔 + 𝑥𝜔(𝜎 ∗
𝜔 + 𝑥 ∗

𝜔

𝜀 ∗
𝜔 + 𝑥 ∗

𝜔
) =

|𝜎𝜔|2 + |𝑥𝜔|2 + 𝜎 ∗
𝜔𝑥𝜔 + 𝜎𝜔𝑥 ∗

𝜔

|𝜀𝜔|2 + |𝑥𝜔|2 + 𝜀 ∗
𝜔𝑥𝜔 + 𝜀𝜔𝑥 ∗

𝜔

(S43)

As the power spectrum of a random variable is its autocorrelation in the time domain, we can then 

substitute the variance  of  for .𝑠2 𝑥 |𝑥𝜔|2

|𝑄 '
𝜔|2 =

|𝜎𝜔|2 + 𝑠2 + 𝜎 ∗
𝜔𝑥𝜔 + 𝜎𝜔𝑥 ∗

𝜔

|𝜀𝜔|2 + 𝑠2 + 𝜀 ∗
𝜔𝑥𝜔 + 𝜀𝜔𝑥 ∗

𝜔

(S44)

To completely remove the dependence of  on the random variables, we take the expected value.  To 𝑄'𝜔

do so, we first need the following identity of the expected value of the spectra of  and . 𝑥𝜔 𝑥 ∗
𝜔

𝐸(𝑥𝜔) = 𝐸[∑
𝑛

𝑥[𝑛]𝑟 ‒ 𝑛𝑒 ‒ 𝑖𝜔𝑛] = ∑
𝑛

𝑟 ‒ 𝑛𝑒 ‒ 𝑖𝜔𝑛𝐸[𝑥[𝑛]] = 0 (S45)

𝐸(𝑥 ∗
𝜔) = 𝐸[∑

𝑛

𝑥[𝑛]𝑟 ‒ 𝑛𝑒𝑖𝜔𝑛] = ∑
𝑛

𝑟 ‒ 𝑛𝑒𝑖𝜔𝑛𝐸[𝑥[𝑛]] = 0 (S46)



Thus, the expected value of the magnitude of the modulus is given below.

𝐸(|𝑄 '
𝜔|2) =

|𝜎𝜔|2 + 𝑠2

|𝜀𝜔|2 + 𝑠2

(S47)

To understand how this erroneous modulus behaves with respect to the amplitude of the noise in the 

data, we can take a Maclaurin expansion of eqn. S47 to obtain a simple scaling behavior which converges 

for all values of  (i.e. reasonable amounts of noise).𝑠2 < |𝜀𝜔|2

𝐸(|𝑄 '
𝜔|2) =

|𝜎𝜔|2

|𝜀𝜔|2
+

∞

∑
𝑛 = 1

( ‒ 1)𝑛|𝜎𝜔|2 ‒ |𝜀𝜔|2

(|𝜀𝜔|2)𝑛 + 1
𝑠2𝑛

(S48)

Since the division of  and  gives the true value of , we can rewrite eqn. S48 to give the |𝜎𝜔|2 |𝜀𝜔|2 |𝑄𝜔|2

following, which is interpreted as the expected value of the error in obtaining  due to noise.𝑄𝜔

𝐸(|𝑄 '
𝜔|2 ‒ |𝑄𝜔|2) = 𝛿𝑄 =

∞

∑
𝑛 = 1

( ‒ 1)𝑛|𝑄𝜔|2 ‒ 1

|𝜀𝜔|2𝑛
𝑠2𝑛

(S49)

Thus, we deduce that the error in the modulus scales according to the rule in eqn. S50.

𝛿𝑄 ~
𝑠2

|𝜀𝜔|2

(S49)



Figure 9: a) force curves with and without noise shown in the blue and orange curves, respectively.  Even 

in the case where the amplitude of the noise is small relative to the full scale of the data, the b) error seen 

when inverting the force curves to obtain the viscoelastic modulus is large.  Here, a 100-sample average 

(shown in blue) was taken to obtain an approximate expected value for this behavior.  Two more plots 

are included which demonstrate the effect of noise when it dominates the c) stress signal and d) the strain 

signal.

As seen previously in Fig. 6, the spectra of typical AFM force and indentation data strongly decay at high 

frequencies.  Thus, one can expect that since the error has an inverse dependence on the magnitude of 

the strain, the error will increase with frequency as seen in Fig. 7b.  Most noticeable is the fact that even 

though the amplitude of the noise used in this example is small, the expected inverted spectrum (green) 

noticeably deviates from the true behavior (orange).  We then perform a 100-sample average to gain a 

practical determination of this expected value as seen in the blue curve.  While the effects of the noise in 

this average are even more pronounced than expected, the spectral averaging considerably reduces the 

error when compared to individual, non-averaged spectra.  Further examples have been provided in Fig. 

7c and 7d where the noise is assumed to dominate the stress only (Fig. 7c) and strain only (Fig. 7d).  In 

these cases, the error due to the noise is considerably worse. 



 

Figure 10: a) ‘strain’ curves  generated for linear indentations for different indenter profiles (flat punch ℎ𝛽

, sphere , and cone ) and b) the magnitude of their spectra in the modified Fourier 𝛽 = 1 𝛽 = 3/2 𝛽 = 2

domain.

Fig. 10 demonstrates various ‘strain’ profiles given by  for a linear indentation.  Here, the different ℎ𝛽

profiles for different indenter geometries are included as well as the magnitudes of their spectra.  We see 

that the conical profile has a spectrum that decays most rapidly whereas the punch decays the slowest.  

Thus, for the same indentation form, a conical indenter will have the most error in the presence of noise 

whereas the flat punch will have the least.  More generally, less divergent excitations will have a less rapid 

attenuation of their magnitude in the frequency domain.  Therefore, we can expect that experiments with 

more gradual excitations will have less high frequency noise than those with more rapid, aggressive ones. 
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