Supporting document S1

Effect of ultrasound on physical properties and processing of biopolymers-A review

Shanta Biswas^{a*} and Taslim Ur Rashid^{b,c*}

^aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA-70803, USA ^b Fiber and Polymer Science, Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, 1020 Main Campus Drive, Raleigh, NC, 27695, USA ^cApplied Chemistry and Chemical Engineering, Faculty of Engineering and Technology,

University of Dhaka, Dhaka-1000, Bangladesh

*Corresponding author sbisw17@lsu.edu taslim@du.ac.bd

Table S1

Effect of ultrasound on the extraction and properties of three major biopolymers

		Extractio					
Biopolymer	Method of extraction	Step(s) involved US	US intensity	Time (min)	Temp (°C)	Physical properties	Ref.
Chitin and Chitosan	Chemical+ US in 40% (w/w) NaOH	Deacetylation	52.6 Wcm ⁻²	50	60	 Chitosan molecular weight decreased to (912,000 g/mol) Degree of polymerization decreased from 6865 to 4889 Degree of acetylation falls from 80.7% to 4.3% Dispersity of 1.3 is found 	2016 1
	Chemical+ US in 40% (w/w) NaOH	Deacetylation	37 kHz	360	80	 Molecular weight decreased from 378 to 361 kDa at 60% NaOH Molecular weight decreased from 439 to 421 kDa at 50% NaOH 	2017 ²
	US under oil-water emulsion	Emulsification	300-600 W	3 to 5	10	 One step process requires less time and energy High intensity decreases droplet size 	2018 ³
	Chemical+ dual US in 10% NaOH	Deacetylation	15 kHz and 20 kHz	15	25	 Molecular weight falls from 20000 g/mol to 5000 g/mol for dual frequency transducer at parallel position Degree of deacetylation (DD) increases from approximately 	2019 4

	-					30% to 80%Viscosity reduced to 12 cP from 85 cP
	US in 1.0 M NaOH under ice bath	Deproteinization	750W and 20 kHz	41.46	30-40	 Less amount of protein is left 2019⁵ after treatment Reduce extraction time with 34 % chitin after deproteinization Not suitable for fat absorption purpose
	US in deionized water	Deproteinization	-	15	-	 Molecular weight 73.61 kDa 2020 ⁶ DD = 80.60 % Particle size = 35.70 μm
				25		 Molecular weight 86.82 kDa DD = 92.86 %
				40		 Particle size = 25.51 μm Molecular weight 55.66 kDa DD = 55.66 % Particle size = 20.10 μm
Starch	US in starch solution + Enzyme		7.20 W/mL	10		 Molecular weight decreased by 2017⁷ 80.19 % Solubility raised by 136.50 %
	US under water		450 W (25 kHz) with 70 % amplitude	15		 Yield increase from 29.85 % to 2018 ⁸ 32.09 % Amorphous region damaged but crystalline region remain fixed.
	US under water		(20 and 45 kHz) (15.29,			 High amylose content starch is 2019 ⁹ obtained

			20.38, 22.93, 24.46 and 25.38 kW/m ²)			
	US under water		150, 300, 450 and 600 W	20	 Granule size did not change 2 but their homogeneity has increases Peak and breakdown viscosity increases 	019 ¹⁰
	US in starch suspension	Nano and Microparticle formation	20 kHz	30	 Starch nanoparticle and 2 microparticle fabrication without chemicals and additional purification steps High amylose content starch source provides smaller nano and microparticle 	019 11
Cellulose	Acid hydrolysis and US in cellulose suspension to get NCC	Acid hydrolysis	60 Hz	10 - (max)	 Molecular weight decreases 2 Disintegrate NCC aggregates and degrade nanocrystals Increase optical clarity of fabricated material 	016 12

		⁷ 37 Hz	120	45	• High crystallinity, thermally 2017 stable spherical shaped NCC is obtained	17 ¹³
US with Water and Fenton reagent	MCC enzymatic hydrolysis pretreatment	800 W, 21-23 kHz	150	25	• Decrease DP and aspect ratio 2016 of MCC	16 ¹⁴
US in NCC suspension	Modifying properties	20 kHz and 60% amplitude	Up to 10	RT	• Increase transparency and 2017 tensile strength of US treated NCC based film	17 ¹²
US in 2M NaOH	Cellulose and lignin extraction	500 W, 20 kHz	Up to 40	90	 Higher thermal stability of 2017 cellulose Less cellulose extraction time 	17 ¹⁵
US with enzymatic hydrolysis		500 W, 20 kHz, 16.2-43.4 Wcm ⁻²	90	50	 Enzymatic hydrolysis is more effective with US compared to conventional method Size and form of raw material, position of the US radiation source are equally important to improve process efficiency 	l7 ¹⁶
US under water with cellulose	Cellulose nanofibers fabrication	25 kHz	-	-	• High thermal stability 2016	16 ¹⁷
		400-1200 W			• Ionic repulsion between the fabricated fiber makes easy separation of fiber	17 ¹⁸

		400 W		•	High yield of fiber	2018 19
US in MCC suspension	To produce fibrillated MCC		120	•	Hydrogels from high aspect fiber is obtained	2018 20
US applied to cellulose pulp	Improving swelling and dissolution behaviour	320 W, 37 kHz	20	30 •	Lowers the crystallinity under a low temperature treatment Decreases the particle size and dissolution time of cellulose	2018 21
US applied to homogenized cellulose pulp	Cellulose micro and nanofiber fabrication	500 W	40	•	High aspect ratio small fiber is obtained	2019 22
US of cellulose in water	Depolymerizing cellulose to glucose	525 kHz	180	60 •	Selective depolymerization of cellulose is recorded without catalyst and extensive heating	2020 23
US with NaOH solution	Cellulose nanocrystal fabrication	120 W, 20 kHz	105	•	Increased crystallinity, lower particle size and high thermal stability are obtained	2021 24

US= Ultrasound, NCC= Nanocrystalline cellulose, MCC= Microcrystalline cellulose, RT= Room temperature

Reference

- 1. A. Fiamingo, J. A. de Moura Delezuk, S. Trombotto, L. David and S. P. Campana-Filho, *Ultrasonics Sonochemistry*, 2016, **32**, 79-85.
- 2. T. H. D. Ngo and D. N. Ngo, International journal of biological macromolecules, 2017, **104**, 1604-1610.
- 3. A. L. R. Costa, A. Gomes and R. L. Cunha, *Food research international*, 2018, **107**, 717-725.
- 4. L.-F. Zhu, J.-S. Li, J. Mai and M.-W. Chang, *Chemical Engineering Journal*, 2019, **357**, 498-507.
- 5. A. Singh, S. Benjakul and T. Prodpran, *Journal of food science*, 2019, **84**, 224-234.
- 6. D. Vallejo-Domínguez, E. Rubio-Rosas, E. Aguila-Almanza, H. Hernández-Cocoletzi, M. Ramos-Cassellis, M. Luna-Guevara, K. Rambabu, S. Manickam, H. S. H. Munawaroh and P. L. Show, *Ultrasonics Sonochemistry*, 2021, **72**, 105417.

- 7. D. Wang, X. Ma, L. Yan, T. Chantapakul, W. Wang, T. Ding, X. Ye and D. Liu, *Carbohydrate Polymers*, 2017, **175**, 47-54.
- 8. C. O. Bernardo, J. L. R. Ascheri, D. W. H. Chávez and C. W. P. Carvalho, *Starch-Stärke*, 2018, **70**, 1700185.
- 9. Y. Li, Z. Wu, N. Wan, X. Wang and M. Yang, *Ultrasonics sonochemistry*, 2019, **59**, 104710.
- 10. W. Yang, X. Kong, Y. Zheng, W. Sun, S. Chen, D. Liu, H. Zhang, H. Fang, J. Tian and X. Ye, *Ultrasonics sonochemistry*, 2019, **59**, 104709.
- 11. A. F. Minakawa, P. C. Faria-Tischer and S. Mali, *Food chemistry*, 2019, **283**, 11-18.
- 12. E. Csiszar, P. Kalic, A. Kobol and E. de Paulo Ferreira, *Ultrasonics sonochemistry*, 2016, **31**, 473-480.
- 13. Z. Z. Azrina, M. D. H. Beg, M. Rosli, R. Ramli, N. Junadi and A. M. Alam, *Carbohydrate polymers*, 2017, **162**, 115-120.
- 14. M.-F. Zhang, Y.-H. Qin, J.-Y. Ma, L. Yang, Z.-K. Wu, T.-L. Wang, W.-G. Wang and C.-W. Wang, *Ultrasonics sonochemistry*, 2016, **31**, 404-408.
- 15. N. Dinh Vu, H. Thi Tran, N. D. Bui, C. Duc Vu and H. Viet Nguyen, *International Journal of Polymer Science*, 2017, **2017**.
- 16. O. E. Szabo and E. Csiszar, *Carbohydrate polymers*, 2017, **156**, 357-363.
- 17. P. Khawas and S. C. Deka, *Carbohydrate polymers*, 2016, **137**, 608-616.
- 18. Z. Hu, R. Zhai, J. Li, Y. Zhang and J. Lin, *International Journal of Polymer Science*, 2017, **2017**.
- 19. E. Syafri, A. Kasim, H. Abral and A. Asben, *Journal of Natural Fibers*, 2019, **16**, 1145-1155.
- 20. T. W. Ching, V. Haritos and A. Tanksale, *Cellulose*, 2018, **25**, 2629-2645.
- 21. A. J. Sayyed, L. V. Mohite, N. A. Deshmukh and D. V. Pinjari, *Ultrasonics sonochemistry*, 2018, **49**, 161-168.
- 22. M. Dilamian and B. Noroozi, *Cellulose*, 2019, **26**, 5831-5849.
- 23. S. Haouache, A. Karam, T. Chave, J. Clarhaut, P. N. Amaniampong, J. M. G. Fernandez, K. D. O. Vigier, I. Capron and F. Jérôme, *Chemical Science*, 2020, **11**, 2664-2669.
- 24. N. Pandi, S. H. Sonawane and K. A. Kishore, *Ultrasonics Sonochemistry*, 2021, **70**, 105353.