Electronic Supplementary Information.

Molecular-mechanical link in shear-induced self-assembly of a functionalized biopolymeric fluid.

Galina E Pavlovskaya^{a,b},* and Thomas Meersmann ^{a,b}
^aSir Peter Mansfield Imaging Resonance Centre, School of Medicine, University of Nottingham, NG2 7RD, United Kingdom. Tel: +44115 84 68131;
^bNIHR Nottingham Biomedical Research Centre, Nottingham, NG2 7RD, United Kingdom. E-mail: galina.pavlovskaya@nottingham.ac.uk

Flow rheology.

Temperature,	Lower	Upper	Equilibration	Single point	Single point	Repeats
К	shear	shear	time,	measurement	measurement	
	rate	rate	s	delay, s	sampling time,	
	limit,	limit,			S	
	S ⁻¹	S ⁻¹				
283	1e-04	200	600	5	30	2
	1e-03	200	120	5	30	
288	1e-04	200	120	5	30	4
	1e-04	200	120	5	30	
	1e-04	200	120	5	30	
	1e-03	200	600	5	30	
295	0.1	200	600	5	30	4
	1e-3	200	120	5	30	
	0.01	200	120	5	30	
	0.01	200	120	5	30	
303	1e-4	200	120	5	30	3
	1e-3	200	120	5	30	
	1e-4	200	120	5	30	
313	0.1	200	120	5	30	3
	1e-4	200	120	5	30	
	1e-4	200	120	5	30	

Table SI1. Additional experimental details of multiple flow experiments.

Figure SI1 Workflow of fluid model assignment based upon TRIOS analysis.

Table SI2. Parameters with SDs for all models tried determined from the analysis of the replicated flow data sets.

Temperature,	Yield stress,	Viscosity,	Viscosity,	Viscosity,	Rate	Rate
К	Ра	Pa.s,	Pa.s,	Pa.s,	index, n	index n,
		НВ	Power law	Newtonian	НВ	Power
						law
283	0.06 ± 0.02	1.49 ± 0.05	1.56± 0.07	-	0.35 ±	0.322 ±
					0.03	0.001
288	0.02 ± 0.07	1.23 ± 0.08	1.24 ± 0.08	-	0.36 ±	0.35 ±
					0.01	0.01

295	0.1 ± 0.2	0.49 ± 0.04	0.58 ± 0.06	-	0.47 ±	0.44 ±
					0.01	0.02
303	-	-	0.0451 ±	-	-	0.824 ±
			0.002			0.006
313	-	-	0.018 ±	0.0140 ±	-	0.946 ±
			0.001	0.0001		0.002

Oscillatory rheology.

Figure SI2. Replicated amplitude sweeps at ω =6.28 rad/s at 283K, 288K, 295K and 303K. Only one amplitude sweep was collected at 303K because G" became large than G'. Strain sweeps at 313K were not performed as the fluid became Newtonian. LVR region was determined as shown in the plot.

Figure SI3. Duplicates of frequency sweeps at 1% strain. Complex viscosity was evaluated using built-in Cox-Merz transformation. The quality could be improved if a higher strain within the LVR was used. These data were used in the main text.

Rheo-NMR.

Figure SI4. Replicated spectra used to produce replicated data points shown In Fig. 6(a) main text.

Shear rate at 288K, s ⁻¹	СО	C1
11.6	6512.4 ± 620	4075.4 ± 216
29	5977.3 ± 446	4363.4 ± 207
58	5467.7 ± 338	3963.3 ± 168
87	6149.6 ± 382	4972.4 ± 342

Table SI3. C0 and C1 amplitudes at 288K as a function of shear rate.

Figure SI5. Multiple Quantum Response at the shear rate = 58s⁻¹ at 303K, 313K and in the absence of shear in the extended temperature range: (a) - ²³Na DQFMA and ²³Na TQF time evolution. No fitting was performed for data collected at 303K and

313K due to the scatter in τ dependencies of both types of MQF signals. Data collected in the absence of shear are shown in crosses. Note that where fitting could not be performed with the satisfactory errors, the data under shear followed similar trend as the data collected in its absence.

Temperature, K	СО	C1
288	5468 ± 338	3963 ± 168
291	4507 ± 389	3621.7 ± 152
295	4983 ± 230	3120.2 ± 172
298	2972 ± 95	1202 ± 102

Table SI4. C0 and C1 amplitudes at 58s⁻¹ as a function of temperature.

Figure SI6. A graph returned after the data analysis at 298K by IGORPro 8.0 (Wavemetrics, USA.) software. DQF MA and TQF data are shown in circles and squares, respectively. Predicted DQF MA and TQF dependencies are shown in solid and dashed lines, respectively.