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1 Appendix

1.1 Simulation Protocols
We implemented our simulations using HOOMD-blue, a molecular dynamics (MD) simulation package in Python1. We
focused on the dilute limit of a single active Brownian particle (ABP) at position Ri and orientation θi. The ABPs have
diameter σ in 2D and interact with fixed obstacles; therefore, hydrodynamic interactions are ignored in these simulations.
The ABPs were initialized and simulated according to the overdamped Langevin equations of motion:

dRi

dt
=
√

2DT η i(t)+
Fi,rep(Ri)

ζ
+

Fi,swim

ζ
(1a)

dθi

dt
=
√

2DRξi(t). (1b)

where Fi,rep is the repulsive force on particle i from the boundaries, ζ is the drag coefficient, and Fi,swim is the swim force.
The swim force is set as Fi,swim = U0ζ qi, where qi = [cosθi,sinθi] is the unit vector describing particle i’s orientation in
2D. Finally, the thermal and rotational diffusion coefficients are DT and DR = 1/τR, with (ηi, ξi) as random variables
obeying the zero mean and variance consistent with the fluctuation-dissipation theorem. We integrate these equations
using a timestep of ∆t = 0.001σ2/DT and integrate the equation over at least 107 steps. To obtain proper statistics, 104

ABPs were integrated per simulation. The drag coefficient and the energy scale of the potential were chosen such that the
active force is much less than the repulsive force at contact U0ζ � 24ε

σ
, preventing significant overlap. Hard-sphere like

interactions between the obstacles and the ABPs were implemented using the Weeks-Chandler-Andersen (WCA)2 potential
(Eq. 2). The boundaries of each system were formed using overlapping rigid surface particles also of size σ . These surface
particles are offset to define the boundaries of the system as the location the ABPs are at contact with the surface particles
(the ABP center is a distance σ from the wall surface particle’s center). The repulsive force from the boundaries on active
particle i is given by

Fi,rep =−∇Vi,wca (2a)

Vwca(Ri) = ∑
j

{
4ε

[(
σ

ri j

)12
−
(

σ

ri j

)6
]
+ ε, ri j ≤ 21/6σ .

0, ri j > 21/6σ .
(2b)

Where ri j = ‖Ri−Rj‖ represents the pairwise distance between the ABP at position Ri and the rigid surface particles at
position Rj. The particle diameters were chosen to be small compared to the geometric features of the obstacle (σ�R,H,L
etc.).
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1.2 Generalized Taylor Dispersion Theory (GTDT) Derivation for a Square Lattice
We use generalized Taylor dispersion theory to obtain the effective translational diffusivity of active particles in an array
of hard obstacles using established procedures3–9. P(R,q, t) represents the probability distribution of an active particle
with position R and orientation q moving through a lattice. There are two local variables, the orientation vector q, and
the radial coordinate r = R−X which is defined as the distance to the nearest lattice center at location X.

R = X+ r (3)

While X = NLL is strictly a discrete variable defined in terms of the lattice spacing L and the lattice number NL, we can
approximate it as a continuous variable for our purposes due to our interest in the far field effects (X� L).

∂P(X,r,q, t)
∂ t

+∇X ·J+∇r ·J−DR
∂ 2P
∂θ 2 = 0 (4)

J =U0qP−DT (∇X P+∇rP) (5)

We now obtain the average flux of the active particle in Fourier space
(
X→ k, and P(X,r,q, t)→ P̂(k,r,q, t)

)
. Then, we

integrate over local degrees of freedom to get the Fourier transformed macroscopic number density n̂(k, t) = 〈P̂〉q,r.

∂ n̂(k, t)
∂ t

+ ik · 〈ĵ1〉q,r = 0 (6a)

〈ĵ1〉q,r = n̂(k, t)[uE− ik ·DE] (6b)

To achieve expressions for the average effective velocity (uE) and diffusivity (DE), we define the structure function Ĝ
as the full probability distribution divided by the macroscopic number density and then expand the structure function in
low wave-vectors:

P̂(k,r,q, t) = n̂(k, t)Ĝ(k,r,q, t) (7a)

Ĝ(k,r,q, t) = g0(r,q, t)+ ik ·d(r,q, t)+O(kk). (7b)

After substituting into Eq. 4 we derive the governing equations for the microstructure field g0(r,q, t) and fluctuation field
d(r,q, t):

Microstructure Field
∂g0(r,q, t)

∂ t
+∇r · [U0qg0−DT ∇rg0]−DR

∂ 2g0

∂θ 2 = 0 (8a)

n̂ · [U0qg0−DT ∇rg0] = 0, on the obstacle surface (8b)

〈g0(r,q)〉r,q = 1 (8c)

Fluctuation Field:

∂d(r,q, t)
∂ t

+∇r · [U0qd−DT (Ig0 +∇rd)]

−DR
∂ 2d
∂θ 2 =−[U0qg0−DT ∇rg0]

(9a)

n̂ · [U0qd−DT (Ig0 +∇rd)] = 0, on the obstacle surface (9b)

〈d(r,q)〉r,q = 0 (9c)

Where n̂ is the unit normal of the obstacle boundary. Both the microstructure and fluctuation fields are subject to periodic
boundary conditions in rotation and across unit cell boundaries. This method provides definitions for the effective velocity
and diffusivity in terms of the microstructure and fluctuation fields.

uE =U0〈qg0〉q,r−DT 〈∇rg0〉q,r (10)

DE = DT I−U0〈qd〉q,r +DT 〈∇rd〉q,r (11)
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For all these systems, there is no net drift and as such the effective velocity is zero. From Eq. 11 the effective diffusivity
tensor is determined by integrating dyads of the fluctuation field with the orientation vector or the gradient operator.
Taking the integrand of the translational integral in Equation 11 allows one to gain local information on how the diffusivity
is impacted by the obstacle.

DE =

〈
DT

Ω
I−U0〈qd〉q +DT 〈∇rd〉q

〉
r

(12)

We define the local diffusivity such that its average is equal to the value obtained in Equation 11 and therefore we
multiply all terms by Ω:

Dxx(r) = DT −ΩU0〈qxdx〉q +ΩDT

〈
∂

∂x
dx

〉
q

(13a)

DE,xx =
1
Ω
〈Dxx(r)〉r (13b)

Dyy(r) = DT −ΩU0
〈
qydy

〉
q +ΩDT

〈
∂

∂y
dy

〉
q

(13c)

DE,yy =
1
Ω

〈
Dyy(r)

〉
r (13d)

where Ω is the free space unoccupied by the obstacle inclusion. In the square lattice array the average effective diffusivities
are the same: DE,xx = DE,yy = DE . For the sinusoidal pore or the tortuous path there are hard boundaries blocking motion
in the x direction: DE,xx = 0, DE,yy = DE .

1.3 Derivation of Fick-Jacobs Approximation for Active Matter
We start with the Smoluchowski equation for an active particle moving in two dimensions under an external potential
V (y).

∂P(x,y,q, t)
∂ t

+∇ · [U0qP−DT ∇P− DT

kBT
P∇V ]−DR

∂ 2P
∂θ 2 = 0 (14)

We can treat this external potential as an free energy penalty imposed by reduction in entropy from the pore constrict-
ing and expanding: V (y) =−kBT ln(w(y)).

∂P(x,y,q, t)
∂ t

+∇ · [U0qP−DT ∇P+DT P∇ ln(w)]−DR
∂ 2P
∂θ 2 = 0 (15)

To find the diffusion coefficient along the pore using the Fick-Jacobs equations, we define the averaged distribution as:

M(y,q, t) =
1

w(y)

∫ x=w(y)
2

x=−w(y)
2

P(x,y,q, t)dx (16)

Where −w(y)/2 is the x position at the left hand side of the pore, and w(y)/2 is the x position at the right hand side of the
pore. Following the methods of Sandoval and Dagdug10, we integrate the Smoluchowski equation over x to isolate the
axial motion.

For a very thin channel we can approximate the motion as quasi-1D in y and ignore variations in x, P(x,y,q, t)→P(y,q, t).
Substituting that into Eq. 16:

M(y,q, t) = P(y,q, t). (17)

Finally, after simplifying Eq. 15 subject to Eq. 17 we arrive at:

∂M
∂ t

+U0 sinθ
∂M
∂y
− ∂

∂y

[
DT

∂M
∂y
−DT M

∂ lnw
∂y

]
−DR

∂ 2M
∂θ 2 = 0. (18)

Previous work by Rubí and Reguera11 demonstrated that these solutions can be improved by the introduction of a
spatially varying diffusion coefficient D(y)

D(y) =
DT

[1+(1/4)w′(y)2]1/3 . (19)
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This can be generalized by mapping the active case onto it’s passive equivalent10:

D(y) =
D0

[1+(1/4)w′(y)2]1/3 . (20)

Finally, the effective diffusivity can be estimated by averaging the spatially varying diffusion coefficient over the periodic
system using the Lifson-Jackson formula12.

DE =
1

〈w(y)〉
1

〈1/D(y)w(y)〉 (21)

1.4 Contours for a Narrow Pore Found via Taylor Dispersion Theory
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Fig. 1 Particles accumulate in concave regions. A-C Local number density of particles for different activity parameters. As the activity
increases in strength, the particles experience larger accumulation near the obstacle surface as shown through the contours. D-F The
pointwise diffusivity deviation found via GTDT (not Fick-Jacobs) along the y direction is ∆Dyy/D0 =

(
Dyy(r)−DModel

)
/D0. The pointwise

diffusivity along the y direction is calculated numerically via dispersion theory. As activity increases, the ABPs spend more time in the convex
region with low local diffusivity, reducing the throughput at the narrow escape. Subplots A,D correspond to `/R = 0 and δ 2/R2 = N/A.
Subplots B,E correspond to `/∆y = 1 and (δ/∆y)2 = 0.05. Subplots C,F correspond to `/∆y = 0.5 and (δ/∆y)2 = 0.25. All data collected
for (H−b)/H = 0.8

.
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1.5 Additional Measurements of ABP Diffusivity through a Tortuous Path

Fig. 2 Additional scaled effective diffusivity measurements of active particles confined to a tortuous path. A) The tortuosity scaling
prediction begins to fail at `/H ≈ 1, even for paths of very large aspect ratio Li/H = 20. This indicates that the geometric feature of
interest is H, the smallest length scale in this geometry. B) The scaled diffusivity is relatively insensitive to the microscopic length,
justifying our use of several different (δ/H)2 ratios when spanning the parameter space in the main text.
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