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In this supplemental document we include a whole set
of example curves which have not been added in the
main manuscript: melamine resin tracers in F-actin, F-
actin/Tm complex (without Tn) and F-actin/Tm/Tn,
and PS tracer in F-actin and F-actin/Tm. We include
these figures here for the sake of completeness, since they
are analogous to the ones already shown in the main pa-
per. In this document, we also include some aspects of
the experimental methods not detailed in the main pa-
per, and a final table with summarizes all the averaged
exponents for different F-actin solutions and tracers.

I. METHODS

To initially analyze the bead motion, we calculate three
representative statistical quantities: mean square dis-
placement (MSD), power-spectral density (PSD) and ve-
locity autocorrelation (VAF). These statistical quantities
are obtained in linear scale because our data acquisition
set-up measures the movement of the trapped particle
in fixed time-steps. However, the plotting of the data
and the calculation of the power-law exponents need a
double-axis logarithmic scale for the functions of inter-
est. To avoid the linear representation and an excess of
experimental points on the left part of the curves, we
perform a logarithmic blocking of the calculated data.
The blocking method divides the abscissa of the plot in
equally distributed intervals in logarithmic scale, i.e., the
blocks. All data points inside the block are averaged and
their errors calculated [1]. The data in this work have
been blocked in ten bins per decade, assuring a good rep-
resentation and visualization of the experimental data.
However, at very short-time scales, t = 1µs, the mea-
sured data are not sufficient to generate equally spaced
blocked points because the lag time is ∆t = 1µs. For this
reason, we restricted the analysis to a minimum temporal
value of ∼ 3.2µs (−5.5 in based-10 logarithmic values).

A. 1P Microrheology

To obtain the viscoelastic modulus from a tracer bead
immersed in the fluid, we have to convert the statisti-
cal quantities relation to the particle’s motion into the
complex modulus G∗(ω) = G′(ω)+ iG′′(ω), where G′′(ω)
is the loss modulus and G′(ω) is the elastic or storage
modulus. The standard formalism in microrheology for
this calculation is to employ the measured MSD through
the Mason-Weitz (MW) approach based on the general-
ized Stokes-Einstein relation (GSER) [2] concurrent with
Mason’s approximation [3] to obtain:

G∗(ω) =
kBT

iωπa〈∆r2(ω)〉
, (1)

where 〈∆r2(ω)〉 is the one-side Fourier transform of the
MSD. A second classic methodology for obtaining G∗

is using the measured PSD of the probe and Kramers-
Kronig (KK) integrals. The power-spectrum density
is related to the imaginary part of the complex sus-
ceptibility, α∗(ω) = α′(ω) + iα′′(ω), by α′′(ω) = ω
PSD(ω)/4kBT . The real part of α(ω) can be obtained
by the known Kramers-Kronig expression:

α′(ω) =
2

π

∫ ∞
0

cos(ωt) dt

∫ ∞
0

α′′(z) sin(zt) dz. (2)

Then, the complex modulus is calculated by G∗(ω) =
1/6πaα∗(ω). The main issue in this method is the calcu-
lation of (2), because of the high-values of the frequencies
inside of the integrals, applied to a finite range of data.
We evaluate eq. (2) by using the efficient Filon methods
developed by Shampine for integrating oscillatory inte-
grals [4], providing analogous results to the MW method
[5].

The validity of the microrheology calculations depends
on two assumptions: i) the applicability of the Stokes
equation, which assumes that the bead moves in a contin-
uum mechanical environment (a > ξ), and ii) the mate-
rial should be in thermal equilibrium, or sufficiently close
to it [6]. Any variation of these conditions will generate
strange effects in the results when obtaining G∗. Besides,
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in both described methodologies (MW and KK) a char-
acteristic breakup for the elastic modulus, G′, at high
frequencies is observed. This behavior, which appears
decades before the influence of the Nyquist frequency [7],
is likely to occur because of the greater sensitivity of the
cosine calculation at low values of t. Additionally, the
Mason’s approximation in the Mason-Weitz method uses
α(s) ≡ (d ln MSD(t)/ ln t)|t=1/s, to locally expand the

MSD around the frequency of interest s. As Mason com-
mented in his work, if α ∼ 1 over a large temporal range,
the estimate for the dominant G′′(ω) is excellent, but
G′(ω) degrades. Besides, the elastic component tends to
be very sensitive to artifacts [8, 9], and great care has
to be applied regarding the interpretation of the calcu-
lated elastic modulus at higher frequencies. Therefore,
we limit the calculations for the elastic modulus, G′(ω),
at ω < 10 kHz (already high-frequency) and we focus on
the behavior of the loss modulus, G′′(ω), in terms of very
high-frequency microrheology of the fluid.

B. Limits of the regression analysis

Here, the values of the power-law exponents are calcu-
lated by linear regressions at logarithmic scale to the data
blocked at 10 points for decade. For this calculation, we
need to define a criteria for the bottom and top limits,
especially in the case of the MSD, where the influence of
the elastic forces at high-time values is clear. The ana-
lytical solution of Langevin equations [10] for a spherical
particle immersed in a Newtonian fluid under an external
harmonic potential with no-slip boundaries and hydrody-
namic effects [11] depends on the following time-scales:
τp = m∗/(6πηa), τf = ρfa

2/η, and τk = 6πηa/k, where
a is the bead radius, η is the fluid’s viscosity and ρf its
density. The effective mass m∗ ≡ mp + mf/2 appears
because of the influence of hydrodynamics, with mf the
mass of the displaced fluid and mp de mass of the par-
ticle, The time-scale τp is an inertial time scale describ-
ing the moment relaxation because of friction forces, τf
represents the time needed by the fluid vortex to prop-
agate itself over one particle radius, and τk is the tem-
poral scale where the restoring force of elastic constant
(trap stiffness), k, is predominant. These characteristic
times verify τp < τf < τk for Newtonian fluids, but the
analogous expressions for a power-law fluid depend on
unknown parameters related to viscosity of the medium
and the friction memory kernel [12].

The experimental time limits are, therefore, calculated
empirically, according to the general behavior of the cal-
culated statistical quantities, by adding multiplying fac-
tors to the Newtonian time scales, τk and τf . Then,
we define the top limit for the MSD as fk τk, while the
bottom limit is ff τf . The ff factor is fixed to ff = 5
because of the position of the minimum in the |VAF|(t)
in the first zero-crossing value. The factor related to
τk = 6πηa/k is also set to fk = 5, to perform the linear
regression far enough from the influence of the elastic

plateau. The k value has to be modified for taking into
account not only the contribution from the optical trap,
but also the elastic component of the fluid. The elastic
modulus for this fluid is estimated to be G0 ∼ 1 Pa (see
section I A), hence k ≈ ki + 6πaG0, where ki is the ap-
plied trap stiffness (i = 1 · · · 4). The corresponding limits
applied to the PSD(f) and the loss modulus G′′(ω) (sec-
tion I A) are ωf = 2π/(ff τf ) and ωk = 2π/(fk τk). For
the |VAF|(t), the short-time limit is the same: ff τf . The
determination of the top limit value, fk τk, is set by using
fk = 0.03.

C. Calibration of example curves

One main issue analyzing OTI data is how to con-
vert the measured signals to units of displacements of
the trapped-Brownian beads, i.e., how to calibrate and
obtain the volts-to-meter conversion factor. This cali-
bration is straightforward when the bead is immersed in
Newtonian fluids [13–15]; if the mechanical behavior of
the fluid is simple, like a Kevin-Voigt fluid [5]; or by using
the method of the double flow chamber [16, 17]. Clas-
sic methods are comparing with the MSD characteristic
plateau at long-times, MSD(∞) = 2kBT/k, if the optical
trap stiffness is already known, or using the Lorentzian
form of the PSD [18].

One calibration method in non-Newtonian fluids uses
the averaged values of 〈k〉 measured in water, in anal-
ogy with the double flow chamber method [19]. Then,
the low-frequency elastic modulus of the fluid should be
greater than the elastic component from the optical trap,
i.e., G′(0) > G′k = k/6πa. If not, the optical trap may
modify the fluid itself and this calibration method is not
correct [20]. In other words, if the trap stiffness generates
an elastic component in the order of the storage modulus
of the fluid, the microrheological measurements for G′ at
low frequencies are not representative of the surround-
ing medium. As we have already analyzed in this paper,
we assume that G′(ω0) < 1 Pa for F-actin solutions at
1 mg/ml.

With our optical tweezers, particles with a = 0.99µm
generate Gk = 18 Pa for the strongest forces (Gk = 7 Pa
for a = 1.47µm). Therefore, the elastic modulus plateau
measured in the fluid, when using the strongest trap,
appears because of the external force. This is why cali-
bration can be made using the averaged water value for
that optical force. Conversely, the lower values of Gk are
in the order of the expected values for G0 in these F-
actin solutions, in agreement with the fact that the bead
could be moved inside the formed fluid using the optical
tweezers in any performed experiment.

All the example curves shown here have been cali-
brated following these steps: i) GSER is calculated from
the MSDs, and a calibration factor for the curve with
the strongest optical trap (k1) is obtained by compar-
ing it with its Gk value measured in water; ii) if we as-
sume that the bead is in thermal equilibrium and that
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TABLE 1S: All averages of the power-law exponents for all optical forces. The parentheses in the numbers are concise notation for the
numerical value of the standard uncertainty.

Material Bead a(µm) k(µN/m) 〈αMSD〉 〈αPSD〉 〈αGSER〉 〈αKK〉 〈βVAF〉
Actin PS(BSA) 0.99 9± 4 0.873(11) 0.869(13) 0.883(9) 0.857(13) 0.90(4)
Actin PS (BSA) 0.99 23± 3 0.861(6) 0.848(7) 0.874(6) 0.851(8) 0.885(16)
Actin PS (BSA) 0.99 85± 17 0.843(8) 0.836(10) 0.866(7) 0.864(9) 0.811(23)
Actin PS (BSA) 0.99 330± 140 0.81(4) 0.80(4) 0.83(4) 0.855(16) 0.89(7)
Actin Tm. PS (BSA) 0.99 9± 4 0.879(2) 0.875(3) 0.888(2) 0.862(3) 0.884(12)
Actin Tm. PS (BSA) 0.99 23± 3 0.862(6) 0.847(6) 0.876(6) 0.854(4) 0.84(3)
Actin Tm. PS (BSA) 0.99 85± 17 0.86(3) 0.85(3) 0.876(15) 0.871(17) 0.80(3)
Actin Tm. PS (BSA) 0.99 330± 140 0.807(13) 0.79(3) 0.845(9) 0.853(12) 0.88(5)
Actin Tm. Tn. PS (BSA) 0.99 9± 4 0.888(3) 0.877(4) 0.887(2) 0.858(7) 0.91(2)
Actin Tm. Tn. PS (BSA) 0.99 23± 3 0.875(1) 0.867(3) 0.885(1) 0.865(1) 0.879(14)
Actin Tm. Tn. PS (BSA) 0.99 85± 17 0.86(2) 0.856(3) 0.878(13) 0.875(4) 0.81(3)
Actin Tm. Tn. PS (BSA) 0.99 330± 140 0.839(10) 0.836(17) 0.862(7) 0.868(5) 0.82(4)
Actin Resin 1.47 7± 2 0.81(3) 0.81(2) 0.82(4) 0.782(19) 1.09(7)
Actin Resin 1.47 13± 3 0.816(16) 0.808(15) 0.829(18) 0.790(17) 1.08(7)
Actin Resin 1.47 42± 5 0.81(3) 0.81(3) 0.82(3) 0.80(3) 1.05(7)
Actin Resin 1.47 180± 70 0.79(3) 0.80(3) 0.80(4) 0.82(4) 1.05(8)
Actin Tm. Resin 1.47 7± 2 0.815(13) 0.806(13) 0.827(12) 0.781(12) 1.06(4)
Actin Tm. Resin 1.47 13± 3 0.824(7) 0.815(7) 0.837(7) 0.795(1) 1.010(16)
Actin Tm. Resin 1.47 42± 5 0.814(11) 0.808(8) 0.829(13) 0.801(13) 1.00(5)
Actin Tm. Resin 1.47 180± 70 0.803(11) 0.803(13) 0.819(14) 0.822(16) 0.97(4)
Actin Tm. Tn. Resin 1.47 7± 2 0.837(12) 0.827(15) 0.847(10) 0.808(9) 1.02(3)
Actin Tm. Tn. Resin 1.47 13± 3 0.83(2) 0.82(2) 0.844(18) 0.806(18) 1.01(4)
Actin Tm. Tn. Resin 1.47 42± 5 0.819(13) 0.813(14) 0.832(13) 0.806(18) 1.01(3)
Actin Tm. Tn. Resin 1.47 180± 70 0.76(3) 0.784(2) 0.76(5) 0.802(12) 1.053(3)

the short-time bevahior reflects the polymeric structure,
all curves should collapse at very short-time values [19],
thus we can calculate a calibration factor for the other
optical forces, iii) the PSD and VAFs are calibrated using
these factors, and iv) finally, the microrheological quan-
tities are calculated once again.

We have to emphasize that calibration is not a key
factor in this study for the following reasons: the quan-
titative differences of 1P microrheology with bulk rheol-
ogy and two-particle microrheology, the influence of the
optical trap even at low trap stiffness, and because our
main objective is to investigate the power-law behavior
of the statistical and microrheological quantities, calcu-
lation which does not depend on the absolute values of
the statistical or microrheological quantities.

Next, we give some additional experimental values
for the elastic modulus at low frequencies which have
been reported in the literature: G′(ω0) ∼ 0.1 Pa, with a
magnetically drive rotation disk rheometer [21]; a range
0.1−10 Pa for concentrations between 0.5−2.0 mg/ml us-
ing 1P microrheology with DWS [22]; G′(ω0) < 0.1 Pa for
a = 0.24µm with 2P microrheology [23]; 0.1− 0.2 Pa us-
ing micro and macrorheometry [24]; G′(ω0) ∼ 0.1 Pa by
means of a rotation disk rheometer [25]; G′(ω0) ∼ 0.2 Pa
for 1P and 2P microrheology [26, 27]; G′(ω = 0.01 Hz) =
0.1 Pa [28]; G′(ω0) < 0.1 Pa in the cardiac thin fila-
ments with calcium with 1 mg/ml actin concentration
[29]; G′(ω0) < 1 Pa using microrheology for different
tracer bead diameters [30]; G′(ω0) < 0.5 Pa through a
cone and plate rheometer [31].

II. RESULTS

As it has been described in the text, the entanglement
length is particularly important in this study. Some ex-
perimental values for the entanglement length in the lit-
erature are the following: le ∼ 0.4µm for 24µM of actin
(or le ∼ 1µm if this value doubles the tube diameter) [32],
le ∼ 2.2µm using a plateau modulus of G′ ∼ 0.1− 0.2 Pa
for F-actin at 1 mg/ml (similar to our experiments) [18],
and le ∼ 1µm for F-actin at 0.3 mg/ml [33].

In Table 1S, we summarize all the averaged values for
the power-law exponents, including the exponent β from
the VAF, for the different experiments performed in F-
actin, F-actin/Tm, and F-actin/Tm/Tn. In this table,
we can clearly see how β (last column) does not depend
on the optical trap, only on the type of trapped particle.

The 7/8 value of the power-law exponent has been pre-
viously detected in similar F-actin experiments. Specif-
ically, some values are the following: α = 0.86 ± 0.04
was obtained by diffusing wave spectroscopy (DWS) for
PS BSA-coated particles with a = 1.6µm and actin con-
centration cA = 0.8 mg/ml [34]; 1 > α > 3/4 for silica
spheres with radii a = 0.6µm in 1 mg/ml non-crosslinked
F-actin solutions [27]; α ∼ 0.9 for entangled F-actin
solution using interferometric microrheology with two
optically-trapped particles [35]; α = 0.88 ± 0.04 in car-
diac thin filaments with added calcium at 3.66µM with
PS 0.489µm tracers [29]; a 7/8 value for G′′(ω) in op-
tically trapped silica beads of a = 2.5µm at 0.1 mg/ml
concentration [36]; 7/8 exponent for a trapped melanine
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resin bead of a = 1.5µm at 0.5 mg/ml [37]; and an expo-
nent apparently in the range 1 > α > 3/4 for G′′(ω) using
one-point microrheology of a collection of bead sizes for
cA = 1 mg/ml [38].

In the following pages we include the example curves
of F-actin solutions which have been not shown in the
main manuscript.
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FIG. 1S: (Color online) a) One dimensional mean-squared displacement (MSD) and b) Power spectral density (PSD) for 1 mg/ml F-actin
solution for an optically trapped polystyrene (PS) BSA-added tracer with a = 0.99µm. All the experimental data have been blocked in

10 bins per decade. Errors are negligible, not plotted for clarity. Trapping forces are indicated in the legend. Regression lines ( ) are

calculated under the limits defined by the blue dashed lines: top ( ) and lower limits ( ) for the MSD (a), inversely for the PSD (b).

The purple line ( ) is a guide for the eye indicating the power-law exponent α = 7/8.

FIG. 2S: (Color online) Real (storage modulus, G′(ω), smaller points) and imaginary (loss modulus, G′′(ω)) parts of the complex
modulus, G∗(ω), for an optically trapped polystyrene (PS) BSA-added tracer with a = 0.99µm in 1 mg/ml F-actin solution. a) Obtained

by means of the GSER and the MSD, or b) through the Kramers-Kronig expression. Symbols and lines are the same as in Fig. 1S.
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FIG. 3S: a) One dimensional mean-squared displacement (MSD) and b) Power spectral density (PSD) for 1 mg/ml F-actin solution for
an optically trapped melamine resin microparticle with a = 1.47µm. All the experimental data have been blocked in 10 bins per decade.

Errors are very small and are not plotted for clarity. Trap forces are indicated in the legend. Regression lines ( ) are calculated under

the limits defined by the blue dashed lines: top ( ) and lower limits ( ) for the MSD (a), inversely for the PSD (b). The purple line

( ) is a guide for the eye indicating the power-law exponent α = 7/8.

FIG. 4S: Real (storage modulus, G′(ω), smaller points) and imaginary (loss modulus, G′′(ω)) parts of the complex modulus (G∗(ω)) for
an optically trapped polystyrene (PS) melamine resin microparticle with a = 1.47µm in 1 mg/ml F-actin solution. a) Obtained by means

of the GSER and the MSD, or b) through the Kramers-Kronig expression. Symbols and lines are the same as in Fig. 3S.
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FIG. 5S: (Color online) Absolute values of the velocity autocorrelation function, |VAF| at 1 mg/ml F-actin solution for a) polystyrene
(PS) BSA microparticle with a = 0.99µm. and b) melamine resin with a = 1.47µm. The errors are calculated by the blocking method.

Data points for the different trap stiffnesses are indicated in the legends. Regression lines ( ) are calculated under the limits defined

by the blue dashed lines: top ( ) and lower limits ( ). The purple lines ( ) is a guide for the eye indicating the averaged
power-law exponent β in each case.).

FIG. 6S: a) One dimensional particle mean-squared displacement (MSD) and b) Power spectral density (PSD) for 1 mg/ml F-Actin/Tm
solution for an optically trapped polystyrene (PS) BSA microparticle with a = 0.99µm. The data have been blocked in 10 bins per

decade. Errors are very small and are not plotted for clarity. Trap forces are indicated in the legend. Regression lines ( ) are calculated

under the limits defined by the dashed lines, the purple line ( ) is a guide for the eye indicating the power-law exponent α = 7/8.



8

FIG. 7S: G′(ω) (small points) and G′′(ω) for an optically trapped polystyrene (PS) BSA microparticle with a = 0.99µm in
F-actin/Tm/Tn complex (cA = 1 mg/ml). a) From GSER (MW) and b) Kramers-Kronig expression. The optical forces are the same as

in Fig. 6S.

FIG. 8S: a) One dimensional particle mean-squared displacement (MSD) and b) Power spectral density (PSD) for 1 mg/ml F-Actin/Tm
solution for an optically trapped melamine resin microparticle with a = 1.47µm. The data have been blocked in 10 bins per decade.

Errors are very small and are not plotted for clarity. Trap forces are indicated in the legend. Regression lines ( ) are calculated under

the limits defined by the dashed lines, the purple line ( ) is a guide for the eye indicating the power-law exponent α = 7/8.
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FIG. 9S: G′(ω) (small points) and G′′(ω) for an optically trapped melamine resin microparticle with a = 1.47µm in F-actin/Tm complex
(cA = 1 mg/ml). a) From GSER (MW) and b) Kramers-Kronig expression. The optical forces are the same as in Fig. 8S.

FIG. 10S: Absolute values of the velocity autocorrelation function, |VAF| at 1 mg/ml F-Actin/Tm solution for a) polystyrene (PS) BSA
microparticle with a = 0.99µm, and b) melamine resin with a = 1.47µm. The errors are calculated by the blocking method. Data points

for the different trap stiffnesses are indicated in the legends. Regression lines ( ) are calculated under the limits defined by the blue

dashed lines: top ( ) and lower limits ( ). The purple lines ( ) are a guide for the eye indicating the averaged power-law
exponent β in each case.
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FIG. 11S: (Color online) a) One dimensional particle mean-squared displacement (MSD) and b) Power spectral density (PSD) for
1 mg/ml F-actin solution with Tm and Tn for an optically trapped melamine resin microparticle with a = 1.47µm.

FIG. 12S: (Color online) G′(ω) (small points) and G′′(ω) for an optically trapped melamine resin microparticle with a = 1.47µm in
F-actin/Tm/Tn complex (cA = 1 mg/ml). a) From GSER (MW) and b) Kramers-Kronig expression. The data symbols are the same as

in Fig. 11S.
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