ELECTRONIC SUPPLEMENTARY INFORMATION

A multifunctional structural coloured electronic skin monitoring body motion and temperature

Arne A. F. Froyen^{1,2}, Albert P. H. J. Schenning^{1,2,3,*}

¹ Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

² Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2,
5600 MB, Eindhoven, The Netherlands

³ SCNU-TUE Joint Laboratory of Device Integrated Responsive Materials (DIRM), South China Normal University, Guangzhou Higher Education Mega Center, 510006, Guangzhou, China

*Corresponding author, email: A.P.H.J.Schenning@tue.nl

1. Development of the multifunctional structural coloured e-skins

1.1 Chemicals

Polyvinyl alcohol (M_w = 9.000-10.000 g/mol, 80 % hydrolysed, and M_w = 31.000-50.000 g/mol, 87-89 % hydrolysed) and glycerol were purchased from Sigma-Aldrich. (S)-octan-2-yl 4-(4-(hexyloxy)benzoyloxy)benzoate (S811) and the nematic liquid crystalline mixture E7 were obtained from TCI Chemicals and Merck, respectively. A silver nanowire containing ink (TranDuctive N15) was purchased from GenesInk.

1.2 Fabrication of the AgNW/PET substrates

The procedure to fabricate the AgNW/PET substrates with gravure printing is identical to earlier reported work.¹ A silver nanowire containing ink (TranDuctive N15, Genesink) was applied on top of a biaxially oriented transparent PET substrate having a thickness of 100 μ m (Melinex 506, DuPont Teijin Films) via gravure printing (IGT F1 Printability Tester). The AgNW/PET foils were prepared by using a 'gravure printing with pre-inking' mode with a printing speed of 0.5 m/s, an anilox force of 250 N, 50 % anilox speed, and three pre-ink revolutions for the anilox before the AgNW-based ink was applied on top of the PET substrate. Afterward, the transparent foils (24 x 5 cm²) were cured for 5 min at 90 °C in an oven to induce film formation. After curing, a four-probe method was used to determine the sheet resistance (R_s) of the printed AgNW/PET substrates: $R_s = 25.97 \pm 0.41 \Omega$ sq⁻¹.

1.3 Preparation of the temperature-responsive photonic emulsion

Polyvinyl alcohol (15 wt %; $M_w = 9.000-10.000$ g/mol, 80 % hydrolysed) and glycerol (2 wt %) were dissolved in demineralized water while stirring at 70 °C until a homogeneous mixture was obtained. A temperature-responsive CLC mixture consisting of a nematic liquid crystalline mixture E7 (70 wt %) and a chiral dopant S811 (30 wt %) was obtained by blending these components at 60 °C to yield a homogeneous mixture. The CLC mixture was added to the aqueous PVA solution in a 20/80 weight ratio and subsequently emulsified at 35 °C for 0.5 h using an overhead stirrer (IKA T 18 digital ULTRA-TURRAX) at a stirring speed of 3000 rpm.

1.4 Fabrication of the multifunctional structural coloured e-skins (PDCLC/AgNW films)

The above-described photonic emulsion, consisting of CLC microdroplets dispersed in an aqueous PVA solution, was diluted by adding a PVA/glycerol solution (15 wt % PVA; Mw = 31.000-50.000 g/mol, 87-89 % hydrolysed, and 2 wt % glycerol in H₂O) in a 10/90 ratio, respectively. The mixture was shaken by hand at room temperature for 2 min to ensure homogeneous mixing and was degassed under vacuum before usage. The diluted emulsion was manually drop cast on top of the gravure printed AgNW/PET substrates after which the system was left to dry for at least 12 hours. After drying, smaller pieces were cut from the PDCLC/AgNW/PET foils to ensure proper contact with the human finger. The dried film was peeled off the substrate using a razor blade, yielding the temperature-responsive PDCLC/AgNW films having an average thickness of 80 μ m. Before recording the resistance changes of the PDCLC/AgNW wearable, wires were attached to the photonic wearable using a conductive epoxy glue (Chemtronics, CW2400) spread out over the width of the films and cured at room temperature for 4 h to establish proper electrical contact. The wires were connected to a DC power supply (Keithley 2400 SourceMeter), which monitored the resistance of the PDCLC/AgNW film over time.

2. Characterization of the PDCLC/AgNW films

The temperature-responsive reflection band shifting was analysed by heating the free-standing PDCLC/AgNW films with an external hot plate while recording the reflection spectra with a Perkin Elmer Lambda 750 UV/vis/NIR spectrophotometer. Air was used as a baseline for the reflection measurements. Polarized optical microscopy (Leica DM2700M microscope) images were collected in reflection mode under crossed polarizers.

3. Optical properties of the dried PDCLC/AgNW films prepared from undiluted emulsions

Fig. S1. a) Temperature-responsive reflection spectra of the free-standing PDCLC/AgNW film prepared from the undiluted photonic emulsion. b) POM images (measured with crossed polarizers) of the dried structural coloured e-skin prepared from the undiluted photonic emulsion, showing the temperature-responsive colour shift and photonic cross-communication inside the spherical CLC microdroplets (scale bar = $50 \mu m$).

4. Images of the dried PDCLC/AgNW films with or without the degassing step

Fig. S2. Images of the dried PDCLC/AgNW film (T = 33 °C) prepared without (a) or with degassing (b) the diluted photonic emulsions before drop casting.

5. Images of the reflective PDCLC/AgNW films for different environmental temperatures

Figure S3. Temperature-responsive reflective color of the photonic wearable at different environmental temperatures. It can be observed that in this case a small color shift was observed for an environmental change of $\Delta T = 5^{\circ}$ C due to heat convection between the user and the environment.

6. Images of the angular-independent structural coloured e-skins

Fig. S4. a) Images of the structural coloured e-skin (T = 33 °C) captured from different viewing angles, displaying the angular-independent reflective colour. b) Uniform colouration of the structural coloured e-skin was observed upon finger bending regardless of the viewing direction (T = 33 °C).

7. Reflection spectra of uni- and bidirectionally stretched PDCLC/AgNW films

Fig. S5. Reflection spectra of a PDCLC/AgNW film (T=33 °C) measured in the unstrained state ($\varepsilon_1 = 0, \varepsilon_2 = 0$) and under unidirectional ($\varepsilon_1 = 0.5, \varepsilon_2 = 0$) and bidirectional stretching ($\varepsilon_1 = 0.5, \varepsilon_2 = 0.5$).

8. Electrical signal monitoring during periodic finger bending/unbending

Figure S6. Real-time resistance monitoring at room temperature of the multifunctional structural coloured e-skin that experienced cyclic finger bending (green), unbending (red), and steady-state periods (grey) corresponding to time intervals for which the finger was in the rest state.

9. Response of the multifunctional structural coloured e-skins during a cyclic load

Figure S7. Real-time resistance monitoring of an e-skin that experienced tactile sensing by rapidly pressing the fixed film.

10. References (ESI)

 A. A. F. Froyen, N. Grossiord, J. de Heer, T. Meerman, L. Yang, J. Lub and A. P. H. J. Schenning, ACS Appl. Mater. Interfaces, 2022, 14, 39375–39383.