Supplementary Information:

On the gelation of humins: From transient to covalent networks

Kenneth Cerdan¹*, Jesus Gandara-Loe², Giel Arnauts², Vedran Vangramberen¹, Anton Ginzburg³, Rob Ameloot², Erin Koos¹, Peter Van Puyvelde¹

¹ Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium

² Department of Microbial and Molecular Systems, Centre for Membrane Separation, Adsorption, Catalysis and Spectroscopy, KU Leuven, Celestijnenlaan 200J, 3001 Heverlee, Belgium

³ Department of Chemical Engineering, Soft Matter, Rheology and Technology (SmaRT), Wetenschapspark 27, 3590 Diepenbeek, Belgium

- water 100 5-HMF chlorsulfuron 99 98 intensity (-) mass (%) 97 96 95 94 93 0 50 100 150 200 250 300 time (min)
- * Corresponding author: Kenneth.cerdangomez@kuleuven.be

Figure S1. Control TGA (red)-MS (blue) experiment of humins. Water (m/z = 18), HMF (m/z = 97) and chlorsulfuron (m/z = 111) intensities are displayed after normalization.

Figure S2. Arrhenius plot showing the temperature dependence of the shear viscosity.

Figure S3. Rheological master curve at 60 $^{\circ}$ C, 80 $^{\circ}$ C and 100 $^{\circ}$ C by applying a time-temperature / time-curing superposition.