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I. THE GRAND PARTITION FUNCTION

Various protein-protein and protein-DNA interactions are the central to the formation of Transcription Activation
Complex (TAC), and these interactions can be quantified by several parameters those are tunable by the selection
and placement of various protein binding DNA sequences. Here, we employ equilibrium statistical mechanics and
explore the cooperative effects for calculating the binding probability of various TACs formed on DNA for these
intricate network motifs. These complexes are the results of combinations of various bio-molecules such as RNA
polymerase(R), transcription factor(P ), and signaling molecule(s). As stated in the main text that the central theme
in this problem is the calculation of population of various complexes formed for different network motifs under grand
canonical ensemble at thermodynamic equilibrium. We present the theoretical calculations in detail to obtain fractions
of transcription active complexes (TAC) and its function, fold change(FC) for few well known network motifs ranging
from simple activation/repression, feedback (FBL) to feed forward (FFL) loops. The detailed derivation for the
calculation of fraction or FC for various complexes can be found elsewhere[1, 2]. The general framework of our theory
is described in the main paper. Here, we describe the few specific protein-DNA interaction networks below.

Activation (X → Y ) and Repression (X ⊣ Y )

As mentioned in the main paper, we consider a gene regulatory network that consists of a regulatory gene GX and
a structural gene GY , and explore the activation or represson of GY by GX . The gene product of GX is TFY that can
act either as an activator or a repressor to the gene GY and produces its desired output. Let RX and RY bind to the
GX and GY respectively and their respective site partition functions are qRX

and qRY
. To define the grand partition

function for the activation and repression, we consider that TFY acts as an activator for GY , and its free energy of
interactions with bound RNAP (RY ) is ϵRY Y . Therefore, we can write the grand canonical partition function for
the network of biomolecular interactions for a system composed of M identical units is given by Ξ = ξM . As given
in the main text, Ξ(λ,M, T ) = (ξOFF + ξON )M . The partition function ξ for an unit can be decomposed into ON
and OFF based on their microstates, hence we write ξ = ξOFF + ξON , where ξOFF = 1 + qRX

λRX
(1 + qY λY ) and

ξON = qRY
λRY

+ qRX
λRX

qRY
λRY

(1 + qY λY e
−

ϵRY Y

kBT ).
Notice that the binding of RY happen only through a coordinated interactions among all the components present in

the network, and hence it also defines the population of TACs present in the system. Therefore, we can calculate the
fraction bound RNAP to the GY gene ( ¯oRY

) as a response function of the network, can be obtained by the following

manner, ¯oRY
=

λRY

M

(
∂lnΞ
∂λRY

)
M,T

oa = ¯oRY
=

ξON

ξ
(S1)

Here the term ω = e
−

ϵRY Y

kBT is the pairwise cooperative factor between RNAP and TFs. If the value of ω > 1, there
is a favourable free energy of interaction between RNAP and TFs that enhances the recruitment of RNAP by a
bound TF . There are two ways where two proteins bind cooperatively if they bound to adjacent sites or if they can
contact through DNA looping. The DNA looping further modulates the ω at least by a factor of 5 as compared to
the ω for nearest neighbor interactions. If the value of ω = 0, there is a mutual exclusion between two proteins when
their binding sites are made to overlap. We exploit this particular condition to model the TF as a repressor. The
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value of ω = 1 corresponds to both of the RNAP and TF bind independently and the mutual interaction between
them is turned off. Both of the RNAP and TF are well separated on the DNA under this condition.
Similar to the activation, the repression effect can be defined as the unbinding of RY from the DNA. Once again we

exploit the protein-DNA and protein-protein interactions for repression. We show that a favourable binding between
TF and DNA and unfavourable binding between RNAP and TF introduces a competition between TF and RNAP for
the binding with DNA. Therefore, we tune the cooperative factor by setting a condition ω = 0 on ξON i.e. mutually
exclusive interactions for the repression. It calculates the fraction of unbound RNAP from GY , ( ¯oRY

) Thus the

repression is defined as ¯oRY
= [ ξON

ξ ]ω=0 = qRY
λRY

+ qRX
λRX

qRY
λRY

. However in many instances, the repression

can also be defined as the binding of the repressor to GY , which is nothing but the or = 1− ¯oRY
= 1− ξON

ξ = ξOFF

ξ .

Induced activation (X → Y ← sY ) and Induced repression (X ⊣ Y ← sY )):

Since the binding of a signalling molecule to the TF modulates the interaction between DNA and TF, it can alter the
population of active complexes. Here, we show how the strength of the interaction between TF and signalling molecule
affect the population of TACs. The problem is very similar to the previous one but two additional components are
introduced here. Such increments in components increases the number of microstates of the network that further
affects the population of the TACs. Let sY represents the signaling molecule that interacts with TFY with ϵsY
interaction energy and this TFY is an activator for GY , thus there exist ϵRY Y interaction energy between RY and
TFY . So, we can write the grand canonical partition function for M sites as Ξ = ξM . The function ξ for this system

is ξ = ξOFF + ξON , where ξOFF = 1 + qRX
λRX

(1 + qY λY (1 + qsY λsY e
− ϵsY

kBT ) and ξON = qRY
λRY

(1 + qRX
λRX

(1 +

qY λY (1 + qsY λsY e
− ϵsY

kBT )e
−

ϵRY Y

kBT )). Therefore, we can calculate the fraction bound RNAP to the GY ( ¯oRY
) as

¯oRy
=

λRY

M

(
∂lnΞ
∂λRY

)
M,T

¯oRY
=

ξON

ξ
(S2)

Similar to the simple repression, the TFY is a repressor. We consider signaling species, sY interacts with TFY with
ϵsY interaction energy and this TFY acts as a repressor for GY . Here we include the repression effect by considering
the excluded volume interaction of TFY and RY , which prevents binding mutually one another. Therefore, we can
calculate the fraction of unbound RY due to the binding of TFY to the GY ( ¯oRY

) is given by, ¯oRY
= [ ξON

ξ ]ω=0, where

the ξON is defined as qRY
λRY

+ qRX
λRX

qRY
λRY

. However, one can also define the repression in terms of the binding

of bound repressor to the GY , which is nothing but the or = 1− ¯oRY
= 1− ξON

ξ = ξOFF

ξ .

Higher Order Protein-DNA Interaction Networks

The above activation and repression can be combined togather that creates a programmable complex assemblies
that control the higher order mechanisms. Out of them feedback and feedforward loops are common and we present
their thermodynamic formalism here. The general framework for this calculation is to define the grand canonical
partition function for the protein-DNA interaction networks and then explore their overall responses in terms of the
binding/unbinding of the RNAP molecule to a particular gene. We show that our proposed thermodynamic formalism
works well for these higher oder protein-DNA interaction networks.

Feedback Loops

In case of FBL, we consider that TFY which is a genetic product of GX acts as either an activator or repressor
for GY and TFX which is a genetic product of GY acts as either an activator or repressor for GX and thus there
exist ϵRY Y ,ϵRXX interaction energy between RY -TFY and RX -TFX respectively. Suppose sX and sY represent the
signaling species which interacts with TFX and TFY with ϵsX and ϵsY interaction energies respectively. So, we can
write the grand canonical partition function, Ξ = ξM for this case.

The function ξ for FBL is ξ = ξOFF + ξON , where ξOFF = 1 + qRY
λRY

(1 + qXλX(1 + qsXλsXe
− ϵsX

kBT )),

and ξON = qRX
λRX

(1 + qRY
λRY

(1 + qXλXe
−

ϵRXX

kBT (1 + qsXλsXe
−

ϵsX
kBT ) + qY λY e

−
ϵRY Y

kBT (1 + qsY λsY e
−

ϵsY
kBT ) +
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qY λY qXλXe
−

ϵRY Y

kBT e
−

ϵRXX

kBT (1 + qsY λsY e
−

ϵsY
kBT )(1 + qsXλsXe

− ϵsX
kBT )) + qY λY (1 + qsY λsY e

− ϵsY
kBT )). Therefore, we can

calculate the fraction( ¯oRX
) of structural RX that has bound to DNA ¯oRX

=
λRX

M

(
∂lnΞ
∂λRX

)
M,T

¯oRX
=

1

ξ
(qRX

λRX
(1 + qRY

λRY
(1 + qXλXe

−
ϵRXX

kBT (1 + qsXλsXe
−

ϵsX
kBT ) + qY λY e

−
ϵRY Y

kBT (1 + qsY λsY e
−

ϵsY
kBT )

+qY λY qXλXe
−

ϵRY Y

kBT e
−

ϵRXX

kBT (1 + qsY λsY e
−

ϵsY
kBT )(1 + qsXλsXe

− ϵsX
kBT )) + qY λY (1 + qsY λsY e

− ϵsY
kBT )))

(S3)

Also, we can calculate the fraction( ¯oRY
) of structural RY that has bound to DNA ¯oRY

=
λRY

M

(
∂lnΞ
∂λRY

)
M,T

¯oRY
=

1

ξ
(qRY

λRY
(1 + qRX

λRX
(1 + qY λY wRY

(1 + qsY λsY e
−

ϵsY
kBT ) + qXλXe

−
ϵRXX

kBT (1 + qsXλsXe
−

ϵsX
kBT )

+qY λY qXλXe
−

ϵRY Y

kBT e
−

ϵRXX

kBT (1 + qsY λsY e
−

ϵsY
kBT )(1 + qsXλsXe

− ϵsX
kBT )) + qXλX(1 + qsXλsXe

− ϵsX
kBT )))

(S4)

A. Feedforward Loops

In case of FFL, we consider that TFY which is a gene product of GX that acts either as an activator or a repressor
for GY and GA. Also, the gene product of GY is TFA which acts as either an activator or repressor for GA and thus
there exist ϵRY Y ,ϵRAY and ϵRAA interaction energy between RY -TFY ,RA-TFY and RA-TFA respectively. Suppose
sY and sA represent the signaling species which interacts with TFY and TFA with ϵsY and ϵsA interaction energies
respectively. Now, as given in the main text there exist a total of eight possible configurations depending on the
binding of TFY and TFA to their respective promoter regions. So, we can write the grand canonical partition
function, Ξ = ξM for the FFL network motif.
The function ξ for GA is ξ = ξOFF + ξON , where ξOFF = 1 + ξOFF1

+ ξOFF2
+ ξOFF3

+ ξOFF4
, and ξON =

ξON1
+ ξON2

+ ξON3
+ ξON4

, where
ξOFF1

= qRY
λRY

(1+qAλA(1+qsAλsA))+qRX
λRX

(1+qAY λY (1+qAsY λsY ))+qRX
λRX

qRY
λRY

(1+qAλA(1+qsAλsA)+

qAY λY ),
ξOFF2

= qRX
λRX

(qsY λsY (1 + qAY λY (1 + qAsY λsY )) + qRY
λRY

(qY λY wRY Y (1 + qAλA) + qAY λY (qAλA(1 + qsAλsA) +

qAsY λsY (1 + qAλA(1 + qsAλsA))))),

ξOFF3 = qRX
λRX

(qY λY qsY λsY (1+ qAY λY (1+ qAsY λsY ))+ qRY
λRY

qY λY (qAλAqsAλsAwRY Y + qAY λY q
A
sY λsY wRY Y (1+

qAλA(1 + qsAλsA)) + qAY λY wRY Y (1 + qAλA(1 + qsAλsA)))),
ξOFF4 = qRX

λRX
qRY

λRY
qY λY qsY λsY wRY Y (1 + qAλA(1 + qsAλsA + qAY λY (1 + qAsY λsY + qsAλsA(1 + qAsY λsY ))) +

qAY λY (1 + qAsY λsY )) ,

ξON1 = qRA
λRA

(1 + qRY
λRY

(1 + qAλAwRAY (1 + qsAλsA)) + qRX
λRX

(1 + qAY λAw
A
RAY (1 + qAsY λsY ) + qRY

λRY
(1 +

qAλAwRAY (1 + qsAλsA)))),
ξON2

= qRA
λRA

qRX
λRX

(qY λY (1+qAY λY w
A
RAY (1+qAsY λsY ))+qRY

λRY
(qY λY wRY Y +qAY λY w

A
RAY (1+qAλAwRAY (1+

qsAλsA) + qAsY λsY (1 + qAλAwRAY (1 + qsAλsA))))),

ξON3 = qRA
λRA

qRX
λRX

qY λY (qsY λsY (1 + qAY λY wRAY ) + qRY
λRY

(qAλAwRY Y wRAY (1 + qsAλsA) +
qAY λY wRY Y wRAY (1 + qAλAwRAY (1 + qsAλsA) + qAsY λsY (1 + qAλAwRAY (1 + qsAλsA))))),

ξON4 = qRA
λRA

qRX
λRX

qY λY qsY λsY (q
A
Y λY q

A
sY λsY w

A
RAY + qRY

λRY
wRY Y (1 + qAλAwRAY (1 + qsAλsA) +

qAY λY w
A
RAY (1 + qAλAwRAY (1 + qsAλsA) + qAsY λsY (1 + qAλAwRAY (1 + qsAλsA)))))

Therefore, we can calculate the fraction( ¯oRA
) of structural RA that has bound to DNA ¯oRA

=
λRA

M

(
∂lnΞ
∂λRA

)
M,T

¯oRA
=

ξON

ξ
(S5)
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II. DYNAMICS

We also develop a dynamical model for the activation, repression, FL, and FFL Network motifs. We assumed that
the promoter corresponding to X, Y, and A genes switch between two states, i.e., Gi, and G∗

i , where i ϵ (X,Y,A).
Here, Gi is associated with the basal expression(i.e., only RNAP is bound to the promoter) and G∗

i is presenting
the stimulated expression(i.e., RNAP is present along with either an activator and repressor). Also, every state
corresponds to a different protein production rate. The binding of protein is responsible for switching between
Gi and G∗

i . Furthermore, the protein molecule itself can undergo a transition from a normal state, i.e.,Pi, and an
induced state, i.e.,P ∗

i with the aid of ligand molecule Li. In general, we consider four types of elementary reactions,
a) basal expression that happens upon binding of only RNAP, b) activation of promoter state happens upon forming
a complex with TFs, c) controlled gene expression mediated through RNAP-TF interactions, and d) degradation of
proteins in our modeling scheme. Thus, the various reactions for the stochastic simulation for these network motifs
and corresponding deterministic equations are presented as follows.

A. Activation and Repression

TABLE S1: This table contains various elementary reactions for the activation(A), repression(R), Induced activation(IA),
Induced repression(IR) network motifs. Here, GX and GY represent the genes with the basal expression, G∗

Y represents the
activated gene, and GΘ

Y represents the repressed gene. Also, TFX and TFY represent the proteins that are expressed by GX

and GY , respectively. The specific reaction rates for each reaction are shown on the marked arrows.

A R IA IR

1) GX
ρX−−→ GX +TFX 1) GX

ρX−−→ GX +TFX 1) GX
ρX−−→ GX +TFX 1) GX

ρX−−→ GX +TFX

2) GY
ρY−−→ GY +TFY 2) GY

ρY−−→ GY +TFY 2) GY
ρY−−→ GY +TFY 2) GY

ρY−−→ GY +TFY

3) GY +TFX
σPYY−−−→ GY* 3) GY +TFX

κYY−−−→ GY
Θ 3)TFX + LX

σX−−→ TFX* 3)TFX + LX
σX−−→ TFX*

4) GY*
σPYY’−−−−→ GY +TFX 4)GY

Θ κYY’−−−→ GY +TFX 4)TFX*
σX’−−→ TFX + LX 4)TFX*

σX
’

−−→ TFX + LX

5) GY*
ρYY

’

−−−→ GY* +TFY 5)TFX
kdX−−→ ϕ 5)GY +TFX*

σPY−−−→ GY* 5)GY +TFX*
κY−−→ GY

Θ

6) TFX
kdX−−→ ϕ 6)TFY

kdY−−→ ϕ 6)GY*
σPY’−−−→ GY +TFX* 6)GY

Θ κY
’

−−→ GY +TFX*

7) TFY
kdY−−→ ϕ 7)GY*

ρY
’

−−→ GY* +TFY 7)TFX
kdX−−→ ϕ

8)TFX
kdX−−→ ϕ 8)TFY

kdY−−→ ϕ

9)TFY
kdY−−→ ϕ

The x vector corresponding to equation 6 in the main paper that is associated with the reaction network for
activation is x = [GY G∗

Y TFX TFY ]
′
and stoichiometry matrix S for the same is given as follows

SA =

0 0 −1 1 0 0 0
0 0 1 −1 0 0 0
1 0 −1 1 0 −1 0
0 1 0 0 1 0 −1


Also, F (X) is written as [ρXGX ρY GY σP Y Y GY TFX σP

′

Y Y G
∗
Y ρ

′

Y Y G
∗
Y kdXTFX kdY TFY ]

′

The x vector associated with the reaction network for repression is x = [GY GΘ
Y TFX TFY ]

′
and stoichiometry

matrix S for the same is given as follows

SR =

0 0 −1 1 0 0
0 0 1 −1 0 0
1 0 −1 1 −1 0
0 1 0 0 0 −1


Also, F (X) is written as [ρXGX ρY GY κY Y GY TFX κ

′

Y Y G
Θ
Y kdX

TFX kdY
TFY ]

′
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The x vector associated with the reaction network for Induced activation is x = [GY G∗
Y TFX LX TF ∗

X TFY ]
′
and

stoichiometry matrix S for the same is given as follows

SIA =


0 0 0 0 −1 1 0 0 0
0 0 0 0 1 −1 0 0 0
1 0 −1 1 0 0 0 −1 0
0 0 −1 1 0 0 0 0 0
0 0 1 −1 −1 1 0 0 0
0 1 0 0 0 0 1 0 −1


Also, F (X) is written as [ρXGX ρY GY σXTFXLX σ

′

XTF ∗
X σP Y GY TF

∗
X σP

′

Y G
∗
Y ρ

′

Y G
∗
Y kdXTFX kdY TFY ]

′

The x vector associated with the reaction network for induced repression is, x = [GY GΘ
Y TFX LX TF ∗

X TFY ]
′
and

stoichiometry matrix S for the same is given as follows

SIR =


0 0 0 0 −1 1 0 0
0 0 0 0 1 −1 0 0
1 0 −1 1 0 0 −1 0
0 0 −1 1 0 0 0 0
0 0 1 −1 −1 1 0 0
0 1 0 0 0 0 0 −1


Also, F (X) is written as [ρXGX ρY GY σXTFXLX σ

′

XTF ∗
X κY GY TF

∗
X κ

′

Y G
Θ
Y kdXTFX kdY TFY ]

′
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TABLE S2: The deterministic equations for the A, R, IA, and IR network motifs are shown here. We follow the symbols
presented in Table S1 to write the rate equations.

A R

dGY

dt
= −σPY Y

GY TFX + σ′
PY Y

G∗
Y

dG∗
Y

dt
= σPY Y

GY TFX − σ′
PY Y

G∗
Y

dTFX

dt
= ρXGX − σPY Y

GY TFX + σ′
PY Y

G∗
Y − kdXTFX

dTFY

dt
= ρY GY + ρ′Y Y G

∗
Y − kdY TFY

dGY

dt
= −κY GY TFX + κ′

Y G
Θ
Y

dGΘ
Y

dt
= κY GY TFX − κ′

Y G
Θ
Y

dTFX

dt
= ρXGX − κY GY TFX + κ′

Y G
Θ
Y − kdXTFX

dTFY

dt
= ρY GY − kdY TFY

IA IR

dGY

dt
= −σPY

GY TF
∗
X + σP ′

Y
G∗

Y

dG∗
Y

dt
= σPY

GY TF
∗
X − σ′

PY
G∗

Y

dTFX

dt
= ρXGX − σXTFXLX + σ′

XTF ∗
X − kdXTFX

dTFY

dt
= ρY GY + ρ′Y G

∗
Y − kdY TFY

dTF ∗
X

dt
= σXTFXLX−σ′

XTF ∗
X−σPY

GY TF
∗
X+σ′

PY
G∗

Y

dLX

dt
= −σXTFXLX + σ′

XTF ∗
X

dGY

dt
= −κY GY TF

∗
X + κ′

Y G
Θ
Y

dGΘ
Y

dt
= κY GY TF

∗
X − κ′

Y G
Θ
Y

dTFX

dt
= ρXGX − σXTFXLX + σ′

XTF ∗
X − kdXTFX

dTF ∗
X

dt
= σXTFXLX − σ′

XTF ∗
X − κY GY TF

∗
X + κ′

Y G
Θ
Y

dTFY

dt
= ρY GY − kdY TFY

dLX

dt
= −σXTFXLX + σ′

XTF ∗
X

Similar to the activation and repression, the elementary reactions are presented in the following table. Following
the same method shown for activation and repression, we can also write the deterministic rate equations for this case.
However, the set of equations is quite large and repetitive; we avoid them writing again here. However, we obtain
the deterministic and stochastic trajectories by considering those elementary biomolecular reactions as presented in
Table S3.
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FIG. S1: Trajectories obtained from stochastic simulations are presented. Here panels A, B, C, and D refer to the production
of proteins for simple activation, repression, induced activation, and repression, respectively. Here red colored solid lines for all
the cases correspond to the deterministic results. A clear correspondence between deterministic and stochastic results is visible
in the figure. The parameters associated with these results are given in the table S7.
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B. FBL

TABLE S3: Elementary reactions for the FBL network motifs are presented in this table. Here, GX and GY represent the
genes with the basal expression, G∗

X and G∗
Y represent the activated genes, and GΘ

X and GΘ
Y represent the repressed genes.

Also, TFX and TFY represent the proteins that are expressed by GX and GY , respectively. The specific reaction rates for each
reaction are shown on the marked arrows.

PFL NFL1 NFL2 FNFL

1)GX
ρX−−→ GX +TFX 1)GX

ρX−−→ GX +TFX 1)GX
ρX−−→ GX +TFX 1)GX

ρX−−→ GX +TFX

2)GY
ρY−−→ GY +TFY 2)GY

ρY−−→ GY +TFY 2)GY
ρY−−→ GY +TFY 2)GY

ρY−−→ GY +TFY

3)TFX + LX
σX−−→ TFX* 3)TFX + LX

σX−−→ TFX* 3)TFX + LX
σX−−→ TFX* 3)TFX + LX

σX−−→ TFX*

4)TFX*
σX’−−→ TFX + LX 4)TFX*

σX’−−→ TFX + LX 4)TFX*
σX’−−→ TFX + LX 4)TFX*

σX’−−→ TFX + LX

5)TFY + LY
σY−−→ TFY* 5)TFY + LY

σY−−→ TFY* 5)TFY + LY
σY−−→ TFY* 5)TFY + LY

σY−−→ TFY*

6)TFY*
σY’−−→ TFY + LY 6)TFY*

σY’−−→ TFY + LY 6)TFY*
σY’−−→ TFY + LY 6)TFY*

σY’−−→ TFY + LY

7)GX +TFY*
σPX−−−→ GX* 7)GX +TFY*

σPX−−−→ GX* 7)GX +TFY*
κX−−→ GX

Θ 7)GX +TFY*
κX−−→ GX

Θ

8)GX*
σPX’−−−→ GX +TFY* 8)GX*

σPX’−−−→ GX +TFY* 8)GX
Θ κX’−−→ GX +TFY* 8)GX

Θ κX’−−→ GX +TFY*

9)GY +TFX*
σPY−−−→ GY* 9)GY +TFX*

κY−−→ GY
Θ 9)GY +TFX*

σPY−−−→ GY* 9)GY +TFX*
κY−−→ GY

Θ

10)GY*
σPY’−−−→ GY +TFX* 10)GY

Θ κY
’

−−→ GY +TFX* 10)GY*
σPY’−−−→ GY +TFX* 10)GY

Θ κY
’

−−→ GY +TFX*

11) GX*
ρX’−−→ GX* +TFX 11) GX*

ρX’−−→ GX* +TFX 11) GY*
ρY’−−→ GY* +TFY 11)TFX

kdX−−→ ϕ

12) GY*
ρY’−−→ GY* +TFY 12)TFX

kdX−−→ ϕ 12) TFX
kdX−−→ ϕ 12)TFY

kdY−−→ ϕ

13)TFX
kdX−−→ ϕ 13)TFY

kdY−−→ ϕ 13)TFY
kdY−−→ ϕ

14)TFY
kdY−−→ ϕ

FIG. S2: Trajectories obtained for various FBL GRN motifs are presented here. Panel A, B, C, and D represent the positive
feedback loop, the negative feedback loop of type I and II, and the mutually inhibiting feedback loop, respectively. The
parameters associated with these results are given in the table S7.
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C. FFL

TABLE S4: This table contains the reactions for the Coherent FFL network motif. Here, GX ,GY and GA represent the genes
with the basal expression, G∗

Y and G∗
A represent the activated genes, and GΘ

Y and GΘ
A represent the repressed genes. Also,

TFX ,TFY and TFA represent the proteins that are expressed by GX ,GY and GA respectively. The specific reaction rates for
each reaction are shown on the marked arrows.

Coherent T1 Coherent T2 Coherent T3 Coherent T4

1)GX
ρX−−→ GX +TFX 1)GX

ρX−−→ GX +TFX 1)GX
ρX−−→ GX +TFX 1)GX

ρX−−→ GX +TFX

2)GY
ρY−−→ GY +TFY 2)GY

ρY−−→ GY +TFY 2)GY
ρY−−→ GY +TFY 2)GY

ρY−−→ GY +TFY

3)GA
ρA−−→ GA +TFA 3)GA

ρA−−→ GA +TFA 3)GA
ρA−−→ GA +TFA 3)GA

ρA−−→ GA +TFA

4)TFX + LX
σX−−→ TFX* 4)TFX + LX

σX−−→ TFX* 4)TFX + LX
σX−−→ TFX* 4)TFX + LX

σX−−→ TFX*

5)TFX*
σX’−−→ TFX + LX 5)TFX*

σX’−−→ TFX + LX 5)TFX*
σX’−−→ TFX + LX 5)TFX*

σX’−−→ TFX + LX

6)TFY + LY
σY−−→ TFY* 6)TFY + LY

σY−−→ TFY* 6)TFY + LY
σY−−→ TFY* 6)TFY + LY

σY−−→ TFY*

7)TFY*
σY’−−→ TFY + LY 7)TFY*

σY’−−→ TFY + LY 7)TFY*
σY’−−→ TFY + LY 7)TFY*

σY’−−→ TFY + LY

8)GY +TFX*
σPY−−−→ GY* 8)GY +TFX*

κY−−→ GY
Θ 8)GY +TFX*

σPY−−−→ GY* 8)GY +TFX*
κY−−→ GY

Θ

9)GY*
σPY’−−−→ GY +TFX* 9)GY

Θ κY’−−→ GY +TFX* 9)GY*
σPY’−−−→ GY +TFX* 9)GY

Θ κY’−−→ GY +TFX*

10)GA +TFX*
σPA1’−−−−→ GA* 10)GA +TFX*

κA−−→ GA
Θ 10)GA +TFX*

κA−−→ GA
Θ 10)GA +TFX*

σPA1−−−→ GA*

11)GA*
σPA1’−−−−→ GA +TFX* 11)GA

Θ κA’−−→ GA +TFX* 11)GA
Θ κA’−−→ GA +TFX* 11)GA*

σPA1’−−−−→ GA +TFX*

12)GA +TFY*
σPA2−−−→ GA** 12)GA +TFY*

σPA2−−−→ GA* 12)GA
Θ +TFY*

κA2−−→ GA
Θ 12)GA +TFY*

κA−−→ GA
Θ

13)GA**
σPA2’−−−−→ GA* +TFY* 13)GA*

σPA2’−−−−→ GA +TFY* 13)GA
ΘΘ κAA’−−−→ GA

Θ +TFY* 13)GA
Θ κA’−−→ GA +TFY*

14) GY*
ρY’−−→ GY* +TFY 14) GA*

ρA’−−→ GA* +TFA 14) GY*
ρY’−−→ GY* +TFY 14) GA*

ρA’−−→ GA* +TFA

15)GA*
ρPA’−−−→ GA* +TFA 15)TFX

kdX−−→ ϕ 15)TFX
kdX−−→ ϕ 15)TFX

kdX−−→ ϕ

16)GA**
ρPA”−−−→ GA** +TFA 16)TFY

kdY−−→ ϕ 16)TFY
kdY−−→ ϕ 16)TFY

kdY−−→ ϕ

17)TFX
kdX−−→ ϕ 17)TFA

kdA−−→ ϕ 17)TFA
kdA−−→ ϕ 17)TFA

kdA−−→ ϕ

18)TFY
kdY−−→ ϕ

19)TFA
kdA−−→ ϕ

FIG. S3: Trajectories for the coherent FFL GRN motifs. Here panel A,B,C and D refer to the coherent FFL type 1,2,3 and 4
respectively. The parameters associated with these results are given in the table S7.
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TABLE S5: This table contains the reactions for the incoherent FFL network motif. Here, GX ,GY and GA represent the
genes with the basal expression, G∗

Y and G∗
A represent the activated genes, and GΘ

Y and GΘ
A represent the repressed genes.

Also, TFX ,TFY and TFA represent the proteins that are expressed by GX ,GY and GA respectively.

Incoherent T1 Incoherent T2 Incoherent T3 Incoherent T4

1)GX
ρX−−→ GX +TFX 1)GX

ρX−−→ GX +TFX 1)GX
ρX−−→ GX +TFX 1)GX

ρX−−→ GX +TFX

2)GY
ρY−−→ GY +TFY 2)GY

ρY−−→ GY +TFY 2)GY
ρY−−→ GY +TFY 2)GY

ρY−−→ GY +TFY

3)GA
ρA−−→ GA +TFA 3)GA

ρA−−→ GA +TFA 3)GA
ρA−−→ GA +TFA 3)GA

ρA−−→ GA +TFA

4)TFX + LX
σX−−→ TFX* 4)TFX + LX

σX−−→ TFX* 4)TFX + LX
σX−−→ TFX* 4)TFX + LX

σX−−→ TFX*

5)TFX*
σX’−−→ TFX + LX 5)TFX*

σX’−−→ TFX + LX 5)TFX*
σX’−−→ TFX + LX 5)TFX*

σX’−−→ TFX + LX

6)TFY + LY
σY−−→ TFY* 6)TFY + LY

σY−−→ TFY* 6)TFY + LY
σY−−→ TFY* 6)TFY + LY

σY−−→ TFY*

7)TFY*
σY’−−→ TFY + LY 7)TFY*

σY’−−→ TFY + LY 7)TFY*
σY’−−→ TFY + LY 7)TFY*

σY’−−→ TFY + LY

8)GY +TFX*
σPY−−−→ GY* 8)GY +TFX*

κY−−→ GY
Θ 8)GY +TFX*

σPY−−−→ GY* 8)GY +TFX*
κY−−→ GY

Θ

9)GY*
σPY’−−−→ GY +TFX* 9)GY

Θ κY’−−→ GY +TFX* 9)GY*
σPY’−−−→ GY +TFX* 9)GY

Θ κY’−−→ GY +TFX*

10)GA +TFX*
σPA1’−−−−→ GA* 10)GA +TFX*

κA1−−→ GA
Θ 10)GA +TFX*

κA−−→ GA
Θ 10)GA +TFX*

σPA1−−−→ GA*

11)GA*
σPA1’−−−−→ GA +TFX* 11)GA

Θ κA1’−−−→ GA +TFX* 11)GA
Θ κA’−−→ GA +TFX* 11)GA*

σPA1’−−−−→ GA +TFX*

12)GA +TFY*
κA−−→ GA

Θ 12)GA
Θ +TFY* – 12)GA +TFY*

σPA1−−−→ GA* 12)GA* +TFY*
σPA2−−−→ GA**

13)GA
Θ κA’−−→ GA +TFY* 13)GA

ΘΘ κA2−−→ GA
Θ +TFY* 13)GA*

σPA1’−−−−→ GA +TFY* 13)GA**
σPA1’−−−−→ GA* +TFY*

14) GY*
ρY’−−→ GY* +TFY 14) TFX

kdX−−→ ϕ 14) GY*
ρY’−−→ GY* +TFY 14) GA*

ρA’−−→ GA* +TFA

15)GA*
ρPA’−−−→ GA* +TFA 15)TFY

kdY−−→ ϕ 15)GA*
ρPA’−−−→ GA* +TFA 15)GA**

ρPA”−−−→ GA* +TFA

16)TFX
kdX−−→ ϕ 16)TFA

kdA−−→ ϕ 17)TFX
kdX−−→ ϕ 17)TFX

kdX−−→ ϕ

17)TFY
kdY−−→ ϕ 17)TFY

kdY−−→ ϕ 17)TFY
kdY−−→ ϕ

18)TFA
kdA−−→ ϕ 18)TFA

kdA−−→ ϕ 18)TFA
kdA−−→ ϕ

FIG. S4: Trajectories for the incoherent FFL GRN motifs. Here panel A,B,C and D refer to the incoherent FFL type 1,2,3
and 4 respectively. Here red colored line for all the cases corresponds to the deterministic results. The parameters associated
with these results are given in the table S7.
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III. KINETIC MONTE CARLO SIMULATION

Kinetic Monte Carlo (KMC), also known as dynamic Monte Carlo, is a numerical tool used to calculate the system’s
stochastic evolution. KMC dispenses individual realizations of the Markov process defined by a few elementary
reactions. It has numerous applicability in many systems, i.e., biology, ecology, chemical reaction dynamics, etc.
Here, We employed the Gillespie algorithm to perform the KMC simulation for the various gene regulatory network
motifs. The change in states for the various vector species [Gi G

∗
i G∗∗

i GΘ
i GΘΘ

i TFi TF
∗
i Li]

′
where i ϵ (X,Y,A) are

presented in the tables. Also, a0 represents the propensity function. Thus, we have performed KMC and updated the
corresponding protein production and degradation for these elementary events with their corresponding rate constants.
The algorithm is straightforward, considers intrinsic noises, and operates in continuous time space and discrete reaction
space. According to the algorithm, it first calculates the propensity function followed by drawing two random numbers
(r1 and r2) from a uniform distribution in the interval (0, 1). The use of the first random number, r1, is to stochastic
update of time (t+τ) during the occurrence of the next reaction, where τ = 1

a0
ln 1

r1 , where a0 =
∑n

i=1 ai, and n in

the occurring event. A reaction is chosen randomly based on the criteria,
∑n−1

i=1 ai < r2a0 ≤
∑n

i=1 ai. The system
states updated after τ interval according to the stoichiometric matrix, S of the reacting system asX(t+τ) = X(t)+S.
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IV. PARAMETERS

TABLE S6: Parameters used for the various network motifs in the main text are presented here. The symbols ϵX,Y ,
ϵRX ,RY ,RA are the binding interaction energy parameters for TF, RNAP and operator interaction. ϵLP is the bending energy
for the formation DNA loops between operators.

Network Motifs Type Symbols Values/kBT References

Simple Activation/Repression

ϵRX
=ϵRY

−2.9 [2–4]
ϵY −10 [3]
ϵRY Y −3 [4]
ϵnn −1 [2]
λRX

=λRY
10−4/kBT [2]

λY 1.5× 10−6/kBT [5]

Feedback Loops

ϵRX
=ϵRY

−2.9 [2–4]
ϵX=ϵY −10 [3]

PFL ϵRXX=ϵRY Y −3 [2, 4, 5]
NFL1 ϵRXX −3
NFL1 ϵRY Y 3
NFL2 ϵRXX 3
NFL2 ϵRY Y −3
FNFL ϵRXX=ϵRY Y 3

λRX
=λRY

10−4/kBT [2]
λX=λY 1.5× 10−6/kBT [5]
ϵnn −1 [2]

Feedforward Loops

ϵRX
=ϵRY

=ϵRA
−2.9 [2–4]

ϵX=ϵY =ϵA −10 [3]
ϵLP 10 [3]
ϵsY =ϵAsA=ϵsA −3 [2, 4, 5]
ϵnn −1 [2]

Coherent T1 ϵRY Y =ϵARAY =ϵRAY −3 [2, 4, 5]
Coherent T2 ϵRAY −3
Coherent T2 ϵRY Y =ϵARAY 0
Coherent T3 ϵRY Y −3
Coherent T3 ϵARAY =ϵRAY 0
Coherent T4 ϵARAY −3
Coherent T4 ϵRY Y =ϵRAY 0
Incoherent T1 ϵRY Y =ϵARAY −3
Incoherent T1 ϵRAY 0
Incoherent T2 ϵRY Y =ϵARAY =ϵRAY 0
Incoherent T3 ϵRY Y =ϵRAY −3
Incoherent T3 ϵARAY 0
Incoherent T4 ϵARAY =ϵRAY −3
Incoherent T4 ϵRY Y 0

λRX
=λRY

=λRA
10−4/kBT [2, 3]

λX=λY =λA 1.5× 10−6/kBT [5]
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TABLE S7: Different values of parameters used in our kinetic calculations are presented here. Symbols ρX , ρY , and ρA are
the forward rate constants for the production of corresponding TF and the prime values of the same are the rate constants
associated with the stimulated forms. Similarly, σX , σY and their prime values indicate the forward and backward rate constants
for the formation of stimulated TF’s respectively. Also, σPX , σPY and their prime values indicate the forward and backward
rate constants for the formation of activated promoters respectively. Similarly, κX , κY and κA and their prime values indicate
the forward and backward rate constants for the formation of repressed promoters respectively.

Parameters Values References
ρX = ρY = ρA 10 min−1 [6]
σX = σY 60 mol−1min−1 [7]
κX = κY = κA 0.1 min−1

σ
′

X = σ
′

Y 60 min−1 [6, 8]

κ
′

X = κ
′

Y = κ
′

A 0.01 min−1

σPX
= σPY

0.0126 mol−1min−1 [6, 7]

σ
′

PX
= σ

′

PY
0.01 mol−1min−1 [6]

ρ
′

X = ρ
′

Y = ρ
′

A 50 min−1 [7]

ρ
′′

A 100 min−1

k
′

dX 1 min−1 [6, 8]

k
′

dY 1 min−1 [6, 7]

TABLE S8: Parameters used for thermodynamic modeling of the gene regulation of Gal promoter in a yeast cell are presented
in the table.

Parameters Symbols Values References

Mig1, Tup1 and glucose

ϵMig1p−Tup1p −17.4kBT [3]
ϵMig1p−DNA −20.72kBT
λMig1p 10−6 [3]
λTup1p 2.5× 10−6 [3]

Gal4,Gal80 and galactose

ϵGal80p−Gal3p −18.5kBT [5]
ϵGal4p−DNA −20kBT [5]
wGal4p−RNAP −3kBT [5]
λGal80p 4× 10−7 [3]
λGal4p 10−6 [3]

RNAP qRλR 0.298 [5]

TABLE S9: Parameters used for the kinetic modeling of gene regulation of Gal promoter in a yeast cell are presented in the
table.

Parameters Values References
ρ1 = ρ2 = ρ3 10 min−1 [9, 10]
σa = σb 60 mol−1min−1 [9]
κPA = κPB 0.01 mol−1min−1 [10]
σPA = σPB = σPC 0.0126 mol−1min−1 [9, 11]

ρ
′

1 = ρ
′

2 = ρ
′

3 100 min−1 [9, 10]

σ
′

a = σ
′

b 60 min−1 [9, 12]

κ
′

PA = κ
′

PB 0.0126 min−1 [9, 12]

σ
′

PA = σ
′

PB = σ
′

PC 0.01 min−1 [11]
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V. COMPLEX ASSEMBLIES FOR VARIOUS FBL GRN MOTIFS.

FIG. S5: Probability distributions of TAC on GX and GY for the FL network are presented. Here A1,A2 represent PFL,
B1,B2 represent NFL1, C1,C2 represent NFL2 and D1,D2 represent FNFL. The calculations are done at a fixed activity of TF
molecules, λTF = 101. The parameters associated with these results are given in the table S6.

FIG. S6: Probability distributions of TAC on GX and GY for the FL network are presented. Here A1,A2 represent PFL,
B1,B2 represent NFL1, C1,C2 represent NFL2 and D1,D2 represent FNFL. The calculations are done at a fixed activity of TF
molecules, λTF = 103. The parameters associated with these results are given in the table S6.

In figure S5,S6 and S7 we have calculated the distribution function of the complexes for three values of λTF i.e.,101,
103, 105 for GX and GY . The detailed discussion is presented in the main text.
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FIG. S7: Probability distributions of TAC on GX and GY for the FL network are presented. Here A1,A2 represent PFL,
B1,B2 represent NFL1, C1,C2 represent NFL2 and D1,D2 represent FNFL. The calculations are done at a fixed activity of TF
molecules, λTF = 105. The parameters associated with these results are given in the table S6.
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VI. GRAND CANONICAL PARTITION FUNCTION BASED CALCULATIONS FOR FFL NETWORKS

A. Coherent FFL

FIG. S8: Results obtained from the grand canonical partition function and MC simulations for the coherent FFL networks are
presented. We consider only the specific interactions based on the network topology in these calculations. However, we ignore
the long-range (interactions through DNA looping) and short-range (nearest neighbor) interactions to avoid mathematical
complexity. Here, A1, B1, C1, and D1 represent coherent FFL of types 1,2,3, and 4 for the theoretical calculations in the
non-interacting regime. The parameters associated with these results are given in the table S6.

B. Incoherent FFL

FIG. S9: Results obtained from the grand canonical partition function and MC simulations of incoherent FFL networks are
presented here. We consider only the specific interactions based on the network topology in these calculations. However, we
ignore the long-range (interactions through DNA looping) and short-range (nearest neighbor) interactions to avoid mathematical
complexity. Here, A2, B2, C2, and D2 represent incoherent FFL of types 1,2,3, and 4 for the simulation results in the non-
interacting regime. The parameters associated with these results are given in the table S6.
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We have observed a good correlation between the theoretical and GCMC simulations as obtained for various FFL’s
network motifs(as presented in the main text) and the corresponding response curves presented in the figures S8 and
S9 from theoretical calculations.
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VII. ENTROPY CALCULATIONS FOR THE COMPLEX ASSEMBLIES FOR THE ACTIVATION AND
REPRESSION OF GRN MOTIFS ARE PRESENTED. THE CALCULATIONS ARE ALSO DONE IN THE

PRESENCE/ABSENCE OF SIGNALING SPECIES.

Here we have calculated Gibbs entropy (S) for various GRN motifs to estimate the reliability of the response
functions. S has a functional form, S = −R

∑
i oilogeoi where the variable oi is the probability or the fraction of

complex i on the promoter regions of the genes in a configuration.

FIG. S10: Entropy(S) for the complexes as obtained for the activation and repression GRNs motif are presented. Here panel
A,B,C and D refer to simple activation,repression,induced activation and repression respectively. The parameters associated
with these results are given in the table S6.

It is observed in figure S10 that the higher value of S is associated with the co-existence of multiple bio-molecular
species for the respective network motifs. Its detailed explanation is given in the main text.
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VIII. ENTROPY CALCULATIONS FOR THE COMPLEX ASSEMBLIES FOR VARIOUS FBL GRN
MOTIFS.

FIG. S11: The entropy of complexes obtained for various FBL GRN motifs is presented here. LHS panels correspond to GX ,
and RHS panels correspond to GY . Panel (A, B),(C, D),(E, F), and (G, H) represent the positive feedback loop, the negative
feedback loop of type I, II, and fully negative feedback loop, respectively. The parameters associated with these results are
given in the table S6.

It can be seen in figure S11 that the S values give the same pattern as that of response function(given in the main
text). Thus, FC and S shows a characteristic of entropy-driven signal transduction which is discussed in the main
text in detail.



20

IX. ENTROPY CALCULATIONS FOR THE FFL

A. Entropy calculations for the coherent FFL

FIG. S12: Entropy of complexes obtained for coherent FFL GRN motifs. Here panel A and B refer to the coherent FFL type
3 and 4 respectively. The parameters associated with these results are given in the table S6.

B. Entropy calculations for the incoherent FFL

FIG. S13: Entropy of complexes obtained for incoherent FFL GRN motifs.Here panel A,B,C and D refer to the incoherent FFL
type 1,2,3 and 4 respectively. The parameters associated with these results are given in the table S6.

In figures S12 and S13 we have observed that higher values of entropy is associated with the region where multiple
complexes are coexisting at different values of λsY and λsA .
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FIG. S14: The probability distribution of proteins obtained from stochastic simulation is shown here. The presented results are
for the activation and repression, feedback loops, and feedforward loops. A clear signature of multimodality for higher-order
network assembly is visible from this analysis. The parameters associated with these results are given in the table S8.

X. GAL GENES IN A YEAST CELL

A. Thermodynamic Model for a Gal promoter in a yeast cell

As discussed in the main text, galactose triggers the decision to express GAL genes, whereas glucose inhibits it.
This complex assembly has two key TFs, i.e., Gal4p and Mig1p protein. Gal4p behaves as an activator for the
expression of GAL genes, whereas Mig1p acts as a repressor. In the absence of galactose, Gal80p binds to Gal4p,
which reduces its ability as an activator. Also, when glucose is present in abundance, it activates Mig1p by recruiting
Tup1p, forming a heteromeric complex. Tup1p behaves as a histone deacetylase (HDAC), making the DNA less
accessible for transcription. Thus, the expression of Gal genes is turned off in the presence of glucose. Galactose
activates the expression of GAL genes by binding to Gal3p. The Gal80p has more affinity for Gal3p than Gal4p.
Thus, galactose turns the expression of Gal genes ON. This whole assembly thus leads to the formation of dual
feedback loops consisting of the positive and fully negative feedback loops.

FIG. S15: Schematic figure showing the network of genetic assembly for Gal responsive genes in a yeast cell is presented.

The probability of occupation of galactose responsive gene or ON expression level as a function of glucose activity
(λglu) for the wild-type, mig1∆, gal80∆, and mig1∆, gal80∆ strains is given by
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PON = Pmax
1

1+qgluλglu

(S6)

FIG. S16: On expression level of gal responsive genes is presented as a function of glucose activity. Solid lines indicate the
experimental results and circles represent our simulated data. The expressions of various mutated variants are marked by
different their legends.

On a final note, a correct understanding of the molecular mechanism behind complex computations of GRNs, equi-
librium statistical mechanics, and its numerical version, such as MC simulations, is quite successful in predicting the
gene expression. We show that only a few complex assemblies on DNA can do such a difficult task, which we have
explored quantitatively using them. Estimating populations of such complexes is challenging from an in vitro experi-
ment. Still, our modeling schemes allow one to connect experimental findings, as evident from our analysis. We show
that the distribution function can be controlled externally by stabilizing or destabilizing complex assembly, which is
crucial for developing a strategy for curing diseases.

FIG. S17: Bio-molecular network for the activator and repressor binding on GAL1 gene.

We have observed a good correlation between the published data[13] and our simulation results in the figure S16.
Expression of gal genes is observed to be decreasing for different strains as the concentration of glucose increases. The
system, as mentioned above, creates a borderline for a yeast cell to use glucose and galactose as a source of energy
when both of them are present in the environment in different quantities. This is known as ratio-sensing, as explained
in the main text. Here, we consider a case where two biomolecules, an activator(A) and repressor(R), bind to the
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promoter of a GAL1 gene. A signaling molecule controls the levels of these biomolecules. The fraction of bound sites
by input molecule A is,

PON = 1
1+qAλA+qRλR+qAλAqRλR

(S7)

FIG. S18: Ratio output is presented for a simple module that consists of two input biomolecules i.e. activator(A) and
repressor(R) where they bind to a promoter of GAL gene as shown in the figure S17.

In figure S18, ratio output is presented as a function of transcription activity of Gal4p or activator(A) and Mig1p
or repressor(R). We have compared our simulation results with the published data[14] for this ratio-sensing and the
excellent correlation we have observed in this figure. It was reported[14] that the ratio of galactose:glucose controls the
expression of gal genes which is known as ”ratio-sensing.” As demonstrated here, we show that our modeling scheme
perfectly works well for this GRN system. Let qM ,qG and qR represent the site partition functions for Mig1p, Gal4p
and RNAP bio-molecules. Also, λM ,λG, and λR represent the Mig1p, Gal4p, and RNAP bio-molecules activities, we
can formulate the grand partition function and calculate the probabilities for the formation of complex assemblies.

ξON = qRλR + qGλGqRλRe
−wGR

kBT ;

ξOFF = qMλM + qGλG

ξ = 1 + ξON + ξOFF

(S8)

Therefore, we can calculate the fraction of RNAP on the promoter (ōP ) for Gal1 gene as follows :
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ōP = ξON

ξ . Here, λM=λMig1p × θM and λG=λGal4p × θG.

The probabilities, θM and θG, for the binding of small molecules such as glucose and galactose to the Mig1p and
Gal3p can be obtained by considering their binding partition functions.

ξM = 1 + qMigλglu + qTupλTupqMigλglu

(S9)

and

ξG = 1 + qGal3λgal + qGal80λgal80qGal3λgal

(S10)

Here, qMig is the site partition function for the binding of glucose on Mig1p, and qTup is the site partition function
for the binding of Tup1p on Mig1p. qGal3 is the site partition function for the binding of galactose on Gal3p, and
qGal80 is the site partition function for the binding of Gal80p(that has bound to Gal4p) on Gal3p.
Also,λglu,λgal and λgal80p represent the respective activities for glucose, galactose, and gal80 protein that has bound

to Gal4 protein. The probabilities, θM and θG as represented as follows.

θM =
qTupλTupqMigλglu

ξM

θG =
qGal80λgal80qGal3λgal

ξG

(S11)
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B. Kinetic Model for a Gal promoter in a yeast cell

We further explore the dynamics of the Gal promoter regulation in the yeast cell. Specifically, we explore the effect
of glucose: galactose ratio sensing in Gal promoter in a yeast cell. We present the results in the S19 and S20. It is
clear from these figures that a higher quantity of glucose is not a sufficient condition for setting the GAL-responsive
genes off. Instead, the ratio of glucose to galactose decides the cell fate in a yeast cell by choosing the correct form
of sugar as its food source. Thus, a more significant amount of glucose and a smaller amount of galactose set the
GAL-responsive genes off. Higher values of both galactose and glucose again switch on the GAL-responsive genes to
some extent, which supports the quantitative prediction of ratio sense.

TABLE S10: This table contains various elementary reactions for the bio-molecular network of a yeast cell. Here,
GAL1,Mig1 and Gal4 represent the genes with the basal expression, GAL1∗,Mig1∗ and Gal4∗ represent the activated genes,
and GAL1Θ,Gal4Θrepresent the repressed gene. Also, Gal1p Mig1p and Gal4p represent the proteins that are expressed by
GAL1,Mig1 and Gal4 respectively. The specific reaction rates for each reaction are shown on the marked arrows.

1) GAL1
ρ1−−→ GAL1 +Gal1p

2) Mig1
ρ2−−→ Mig1 +Mig1p

3) Gal4
ρ3−−→ Gal4 + Gal4p

4) Gal + Gal3p
σa−−→ Gal3p*

5) Gal3p*
σa−−→ Gal + Gal3p

6) Gal80p + Gal4
κPA−−→ Gal4Θ

7) Gal4Θ
κPA’−−−→ Gal80p + Gal4

8) Gal3p* +Gal4Θ
σPA−−→ Gal4*

9) Gal4*
σPA’−−−→ Gal3p* +Gal4Θ

10) Glu + Tup1p
σb−−→ Tup1p*

11) Tup1p*
σb ’−−→ Glu + Tup1p

12) Tup1p* +Mig1
σPB−−→ Mig1*

13) Mig1*
σPB’−−−→ Tup1p* +Mig1

14) GAL1 +Gal4p
σPC−−→ GAL1*

15) GAL1*
σPC’−−−→ GAL1 +Gal4p

16) GAL1 +Mig1p
κPB−−→ GAL1Θ

17) GAL1Θ
κPB’−−−→ GAL1 +Mig1p

18) GAL1*
ρ1

’

−−→ +Gal1p

19) Mig1*
ρ2

’

−−→ Mig1* +Mig1p

20) Gal4*
ρ3

’

−−→ Gal4* +Gal4p

21) Gal1p
kd1−−→ ϕ

22) Mig1p
kd2−−→ ϕ

23) Gal4p
kd3−−→ ϕ
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FIG. S19: Trajectories obtained from stochastic simulations are presented. Here panels A, B, C, and D refer to the presence
of galactose and absence of glucose, presence of both glucose and galactose, absence of glucose and galactose, and absence of
galactose and presence of glucose, respectively. Here red colored solid lines for all the cases correspond to the deterministic
results. A clear correspondence between deterministic and stochastic results is visible in the figure. The parameters associated
with these results are given in the table S9.

FIG. S20: The stochastic potentials for various different values of glucose and galactose for a gal promoter in a yeast cell are
shown in the 2d contour maps. Here panels A, B, C, and D refer to the presence of galactose and absence of glucose, presence
of both glucose and galactose, absence of glucose and galactose, and absence of galactose and presence of glucose, respectively.
The parameters associated with these results are given in the table S9.
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