Supporting information

Elastoplastic behavior of anisotropic, physically crosslinked hydrogel networks comprising stiff, charged fibrils in an electrolyte

Rebecca Östmans,^{1, 2, +} Maria F. Cortes Ruiz,^{1, 2, +} Jowan Rostami,¹ Farhiya Alex Sellman,^{1, 2} Lars Wågberg,^{1, 2} Stefan B. Lindström³ and Tobias Benselfelt,^{1, 4, *}

¹ Department of Fibre and Polymer Technology, Division of Fibre Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.

² Wallenberg Wood Science Center, 100 44 Stockholm, Sweden

³ FSCN Research Center, Mid Sweden University, 851 70 Sundsvall, Sweden

⁴ School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore

⁺ These authors contributed equally to this work

* Correspondence to: bense@kth.se or gustaftobias.b@ntu.edu.sg

Fig. S1. Length distribution for a) CM-long, b) CM-short, c) Cat-long, and d) Holo CNFs.

Fig. S2. Width distribution for a) CM-long, b) CM-short, c) Cat-long, and d) Holo CNFs.

Fig. S3. Hypothetical mechanism for Holo-CNF interfaces by entanglement, interdiffusion, and redistribution of charges to dissipate repulsion.

Fig. S4. Plate pressure (*P*) as a function of compressive strain for a) CM-short, b) Cat-long, and c) Holo CNFs.

	01	C (1	1	· •	1 .	•	
Table	SL.	Steps	and	relaxation	time	during	compression	measurements.
						B		

STEP	COMPRESSION	RELAXATION
	RATE (µm/s)	TIME (min)
1	0.3	20
2	0.3	20
3	0.3	20
4	0.3	20
5	0.2	20
6	0.2	20
7	0.2	40
8	0.1	40
9	0.1	60
10	0.1	60