Super-Fast Iodine Capture by an Ionic Covalent Organic Network (iCON) from Aqueous and Vapor Medium

Prince^[a], Atikur Hassan^[a], Sohom Chandra^[a], Akhtar Alam^[a], Neeladri Das^[a]*

^[a]Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India

Corresponding author. E-mail: <u>neeladri@iitp.ac.in</u>, <u>neeladri2002@yahoo.co.in</u>

Tel: +91 9631624708

Table of contents

Page no.

Scheme S1: Synthesis of triaminoguanidium chloride (TAG _{Cl})S3
Table S1: Solubility/insolubility chart of iCON-4S-3
Figure S1 : NLDFT pore size distribution of iCON-4S-4
Figure S2: FTIR spectra of the iCON-4 along with acid and base treated iCON-4S-5
Table S2: Comparison table of time required to remove iodine adsorbents from aqueous solution
Figure S3. Change in concentration of iodine with time
Figure S4: Pseudo first order data fitting of data related to adsorption of iodine by iCON-4 from aqueous solution
Figure S5: Fitting of iodine adsorption data of iCON-4 using the Freundlich isotherm model from water
Table S3: Comparison table of iodine capture by adsorbents from aqueous solutionS-8
Figure S6: Column experiment setup for iodine adsorption by iCON-4S-9
Figure S7: Iodine adsorption data of iCON-4 from iodine spiked (a) lake water (b) river water
Figure S8: Iodine adsorption data of iCON-4 from iodine spiked (a) sea water (b) tap water
Figure S9. Adsorption data of iCON-4 for the capture of pure iodine from waterS-11
Figure S10. Iodine adsorption data of iCON-4 from n-hexane solutionS-11
Figure S11. Retention capacity of I ₂ @iCON-4S-12
Figure S12. Probable schematic illustration of I ₂ uptake mechanism by iCON-4 in vapor medium
Figure S13. Iodine release in methanol from I ₂ @iCON-4S-13
Figur S14. Iodine release from I ₂ @iCON-4 upon heatingS-13
Figure S15. Reusability of iCON-4 towards the iodine uptake in vapor phaseS-14
Table S4: Comparison table of iodine capture by adsorbents from vapor phaseS-14 to S16

Experimental Section:

Synthesis of triaminoguanidium chloride (TAG_{Cl}):

Scheme S1. Synthesis of triaminoguanidinium chloride (TAG_{Cl})

To a mixture of 1.91 g (20 mmol) of guanidium hydrochloride, and 3.41 g (106 mmol) of hydrazine hydrate, 10 ml of 1, 4-dioxane was added under continuous stirring. The reaction mixture was refluxed for 2 hours. After that, the reaction mixture was allowed to cool down to room temperature and the product was filtered. Next, the product was washed with 1, 4-dioxane and dried to yield TAG_{Cl} .

Organic Solvents	Solubility
Methanol	Insoluble
Dimethyl Sulfoxide	Insoluble
Dimethylformamide	Insoluble
Dimethylacetamide	Insoluble
Acetonitrile	Insoluble
1,2 – Dichloroethane	Insoluble
Tetrahydrofuran	Insoluble
Toluene	Insoluble
Xylene	Insoluble
Ethyl acetate	Insoluble
Hexane	Insoluble
Dichloromethane	Insoluble

Table S1: Solubility/insolubility chart of iCON-4

Figure S1 : NLDFT pore size distribution of iCON-4

Figure S2. FTIR spectra of the iCON-4 along with acid and base treated iCON-4

 Table S2: Comparison table of time required to remove iodine adsorbents from aqueous solution

Compounds	Contact time	Selectivity	Recyclabi lity	Ref
iCON-4	120	Cl ⁻ ,Br ⁻ ,NO ₃ ⁻	7	This work
	seconds	,SO4 ²⁻		
CMP-4	180 min	NR	5	Angew. Chem. Int. Ed. 2021,
				60,8967 - 8975
Compound-1	10 min	Cl ⁻ ,Br ⁻ ,NO ₃ ⁻	4	ACS Appl. Mater. Interfaces 2021,
Compound-2	30 min	,SO4 ²⁻		13, 34188–34196

Nanobones,	>78 mins	NR	NR	ACS Appl. Mater. Interfaces 2019,
nanosheets				11, 8537–8544
Cu-BTC@PES	>65min	NR	3	ACS Appl. Mater. Interfaces 2019,
				11, 42635–42645
THPS-C	120 min	NR	5	Adv. Mater. Interfaces 2019,
				1900249
TNHCPs	120 min	NR	5	Separation and Purification
				Technology 257 (2021) 117923
H _c OF-1	240 min	NR	ND	J. Am. Chem. Soc. 2017, 139,
				7172–7175
PTIBBL	500 min	NR	5	Chem. Commun., 2020,56, 1401
				1404
NTP	60 min	NR	5	ACS Macro Lett. 2016, 5,
				1039–1043
MBM	>30 min	NR	NR	Angew. Chem. Int. Ed. 2018,
				57,10148 -10152
SCNU-Z4	>960 min	NR	NR	Inorg. Chem. Front., 2021, 8, 1083-
				1092
H _c OF-3	240 min	NR	NR	J. Am. Chem. Soc. 2019, 141,
				10915-10923

NR = Not reported

Figure S3. Change in concentration of iodine with time

Figure S5. Fitting of iodine adsorption data of iCON-4 using the Freundlich isotherm model from water

Adsorbents	Medium	BET	I ₂ uptake	Reference
		Suface	(mg·g-1)	
		area(m²/g)		
iCON-4	Water	30.55	1632.17	This Work
HcOF-1	Water	NR	2900	J. Am. Chem. Soc., 2017, 139 ,
				7172–7175
Fe ₃ O ₄ @PPy	Water	NR	1627	J. Hazard. Mater., 344 (2018) 576–584
PCN-223	Water	642.089	1615.882	Sep. Purif. Technol., 233 (2020) 115999
PCN-223-HPP	Water	851.271	1676.960	Sep. Purif. Technol., 233 (2020) 115999
$\{[(ZnI_2)_3(TPT)_2] \cdot 5.5 \\ (C_6H_5NO_2)\}n$	Water	NR	1.73	Chem. Sci., 2017, 8, 3171
pSi–C composite	Water	762.13	299.40	<i>RSC Adv.</i> ,2021, 11 ,5268–5275
TAPB-BPDA COF	Water	1082	988.17	React. Funct. Polym, 159 (2021) 104806
THPS-C	Water	3125	926	Adv. Mater. Inter., 2019, 6, 1900249
NTP	Water	1067	429	ACS Macro Lett.,2016, 5, 1039
Cadmium(II)-triazole	Water	NR	110	Chem. Commun., 2011,47, 7185-7187

Table S3: Comparison table of iodine capture by adsorbents from aqueous solution

MOF				
MBM - MOF	Water	62	880	Angew. Chem., Int. Ed., 2018, 57, 10148
CdL2	Water	NR	460	Chem. Commun., 2011, 47 , 7185
PVDF/ZIF-8	Water	NR	73.33	Sep. Purif. Technol., 238 (2020) 116488

NR= Not reported

Figure S6. Column experiment setup for iodine adsorption by iCON-4

Figure S7. Iodine adsorption data of iCON-4 from iodine spiked (a) lake water (b) river

water

Figure S8. Iodine adsorption data of iCON-4 from iodine spiked (a) sea water (b) tap water

Figure S9. Adsorption data of iCON-4 for the capture of pure iodine from water.

Figure S10. Iodine adsorption data of iCON-4 from n-hexane solution

Figure S11. Retention capacity of I2@iCON-4

Figure S12. Probable schematic illustration of I_2 uptake mechanism by iCON-4 in vapor medium

Figure S13. Iodine release in methanol from I2@iCON-4

Figure S14. Iodine release from $I_2@iCON-4$ upon heating

Figure S 15. Reusability of iCON-4 towards the iodine uptake in vapor phase

Adsorbents	Temperature (°C)	BET Suface	I ₂ uptake	Reference
		area(m²/g)	(g·g-1)	
iCON-4	75	30.55	5.7	This Work
TPB-DMTP	75	1027	6 260	Adv. Mator. 2018 30 1801991
COF	15	1927	0.200	Auv. Muler., 2010, 30 , 1001991
TBIM	77	8.12	9.43	J. Mater. Chem. A, 2020, 8, 2820–2826
TJNU-201	77	2510	5.625	J. Mater. Chem. A, 2020, 8, 9523-9527
NDB-H	75	117	4.430	<i>Chem. Asian J.</i> , 2018, 13 , 2046-2053
CMP-LS4	77	462	3.32	Polym. Chem., 2020, 11,2786
PHF-1-Ct	80	690	4.05	Cham Commun 2019 54 12706 12700
PHF-1	80	1046	3.05	<i>Chem. Commun.</i> , 2018, 54 , 12700-12709
CTF-CTTD-	75	1334	3.87	Ind. Eng. Chem. Res., 2018, 57, 44,
500	15	1554	5.67	15114–15121
HCMP-3	75	92	3.36	Macromolecules 2016, 49, 17, 6322–6333
POP-1	80	12	3.570	J. Hazard. Mater., 2017, 338, 224-232

TBTT-CMP@3	77	62.89	3.52	Polym. Chem., 2020, 11, 2786
Micro-COF-1	75	816	2.9	Ind. Eng. Chem. Res., 2019, 58, 10495-
Micro-COF-2	15	1056	3.5	10502.
Azo-Trip	77	510.4	2.36	Polym. Chem., 2016, 7, 643
MOF-808	80	1930	2.18	ACS Appl. Mater. Interfaces, 2020, 12 , 20429–20439.
PAN-B	75	1254	3.17	Polymor 194 (2020) 122401
PAN-T	75	1273	3.11	<i>F olymer</i> , 194 (2020) 122401
PAF-24	75	136	2.76	Angew. Chem. Int. Ed., 2015, 54, 12733– 12737.
N-HCP	75	222.8	2.57	Sep. Purif. Technol., 236 (2020) 116260
CMPNH2	75	6.44	2.83	J. Mater. Chem. A, 2020, 8, 1966-1974.
CPP 1			1.53	
CPP 2	80	NR	2.00	Polym. Chem., 2020, 11,3066
CPP 3			1.40	
PAN-FPP5	71.85	788.0	1.45	Ind. Eng. Chem. Res., 2020, 59 , 3269-
PAN-TPDA	71.85	752.0	1.15	3278.
NRPP-1	80	1579	1.92	ACS Appl. Mater. Interfaces, 2018, 10,
NRPP-2	00	1028	2.22	16049-16058
CBP1		3.0	145	
CBP2		143	101	
CBP3	80	794	135	Polym. Chem., 2021, 12,2282
CBP4		98	140	
CBP5		203	166	
CMPN-3	70	1368	2.080	J. Mater. Chem. A, 2015, 3, 87-91.
HKUST-1	75	NR	1.75	Chem. Mater., 2013, 25, 2591
ZIF-8	77	1630	1.250	J. Am. Chem. Soc., 2011, 133, 12398- 12401

NR = Not reported